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Abstract 
 

Verification and validation (V&V) are the primary means to assess accuracy and reliability 
of computational simulations. V&V methods and procedures have fundamentally improved the 
credibility of simulations in several high-consequence application areas, such as, nuclear reactor 
safety, underground storage of nuclear waste, and safety of nuclear weapons. Although the 
terminology is not uniform across engineering disciplines, code verification deals with the 
assessment of the reliability of the software coding and solution verification deals with the 
numerical accuracy of the solution to a computational model. Validation addresses the physics 
modeling accuracy of a computational simulation by comparing with experimental data. Code 
verification benchmarks and validation benchmarks have been constructed for a number of years 
in every field of computational simulation. However, no comprehensive guidelines have been 
proposed for the construction and use of V&V benchmarks. Some fields, such as nuclear reactor 
safety, place little emphasis on code verification benchmarks and great emphasis on validation 
benchmarks that are closely related to actual reactors operating near safety-critical conditions. 
This paper proposes recommendations for the optimum design and use of code verification 
benchmarks based on classical analytical solutions, manufactured solutions, and highly accurate 
numerical solutions. It is believed that these benchmarks will prove useful to both in-house 
developed codes, as well as commercially licensed codes. In addition, this paper proposes 
recommendations for the design and use of validation benchmarks with emphasis on careful 
design of building-block experiments, estimation of experiment measurement uncertainty for 
both inputs and outputs to the code, validation metrics, and the role of model calibration in 
validation. It is argued that predictive capability of a computational model is built on both the 
measurement of achievement in V&V, as well as how closely related are the V&V benchmarks 
to the actual application of interest, e.g., the magnitude of extrapolation beyond a validation 
benchmark to a complex engineering system of interest. 
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 1. Introduction 
1.1 Background 

 
The importance of computer simulations in the design and performance assessment of 

engineered systems has increased dramatically during the last three or four decades. The systems 
of interest include existing or proposed systems that operate, for example, at design conditions, 
off-design conditions, and failure-mode conditions in accident scenarios. The role of computer 
simulations is especially critical if we are interested in the reliability, robustness, or safety of 
high-consequence systems that cannot ever be physically tested in a fully representative 
environment. Examples are the catastrophic failure of a full-scale containment building for a 
nuclear power plant, unusual environments or damaged hardware of the US Space Shuttle, long-
term underground storage of nuclear waste, and a nuclear weapon involved in a transportation 
accident. In many situations, it is even difficult to specify what a “representative environment” 
actually means in complex system. However, computer simulations are beneficial to improved 
understanding of the response of the system, in the development of public policy, the preparation 
of safety procedures, and the determination of legal liability. With this increased responsibility, 
we believe the credibility of the computational results must be raised to a higher level than has 
been accepted during the early decades of computational simulation. From a historical 
perspective, we must realize that we are in the early days of changing from an engineering 
culture of build-test-fix, to a culture based on virtual reality. To have justified confidence in this 
evolving culture, major improvements must be made in the transparency and visibility of both 
the maturity of the computer codes used, as well as the uncertainty assessment of the physics 
models used. Stated more bluntly, we need to move from a culture of glossy marketing and 
arrogance, to a culture that forthrightly addresses the limitations, weaknesses, and uncertainty of 
our simulations. 

Developers of computational software, computational analysts, and users of the results of 
simulations face a critical question: How should confidence in computational science and 
engineering (CS&E) be critically assessed? Verification and validation (V&V) of computational 
simulations are the primary building blocks for assessing and quantifying this confidence. 
Briefly, verification is the assessment or estimation of the numerical accuracy of the solution to a 
given computational model. Validation is the assessment of the accuracy of a computational 
model through comparison of computational simulations with experimental data. In verification, 
the association or relationship of the simulation to the real world is not an issue. In validation, 
the relationship between computation and the real world (experimental data) is the issue. 

The nuclear reactor safety community has a long history of contributing to the intellectual 
foundations of V&V and uncertainty quantification (UQ). The risk assessment community in its 
dealings with underground storage of nuclear waste has also made significant contributions to 
the field of UQ. However, contributions from both of these communities to V&V&UQ have 
concentrated on software quality assurance procedures, as well as statistical procedures for 
uncertainty estimation. It is fair to say that computationalists (code users and code developers) 
and experimentalists in the field of fluid dynamics have been pioneers in the development of 
terminology, methodology and procedures for V&V. The (only) book in the field on V&V 
provides a good summary of the development of many of the methodologies and procedures in 
computational fluid dynamics (CFD).[1] Also, Refs. [2-5] provide a comprehensive review of 
the history and development of V&V from the perspective of the CFD community. 

To achieve the next level in credibility of computational simulations will require concerted 
and determined efforts by individuals, universities, corporations, governmental agencies, 
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commercial code development companies, engineering societies, and standards-writing 
organizations throughout the world. The goal of these efforts should be to improve the quality of: 
the physics models used, the reliability of the computer software, the numerical accuracy 
estimation, the uncertainty quantification, and the training and expertise of users of the codes. In 
addition, new methods are critically needed for effectively communicating the maturity and 
reliability of each of these elements, especially in relationship to decision making on high-
consequence systems. This paper will focus on one aspect of needed improvements to code 
quality and physics model accuracy assessment, specifically, the construction and use of highly 
demanding V&V benchmarks. The benchmarks of interest here are those relating to accuracy 
and reliability of codes and physics models. We are not interested here in benchmarks that relate 
to performance issues, such as, computing speed of codes or performance of codes on different 
types of computer hardware and operating systems. 

Probably the most widely known V&V benchmarks have been developed over the last two 
decades by the National Agency for Finite Element Methods and Standards (NAFEMS).[6] 
Roughly 30 verification benchmarks have been constructed by NAFEMS primarily in solid 
mechanics, but more recently in fluid dynamics. Most NAFEMS verification benchmarks consist 
of an analytical solution, or an accurate numerical solution, to a simplified physical process 
described by a partial differential equation. The NAFEMS benchmark set is carefully defined, 
numerically demanding, and well documented. However, these benchmarks are, at the present 
time, very restricted in their coverage of various mathematical and/or numerical difficulties, and 
also their coverage of physical phenomena. In addition, how well a given code performs on the 
benchmark is left to the interpretation of the user of the code. It would also be expected that the 
code performance on the benchmark would depend on the experience and skill of the user. 

Several large commercial code companies dealing with solid mechanics have developed an 
extensive set of verification benchmarks that are well documented and can be exercised by 
licensed users of the code. Such benchmarks are intended to be applied to that specific code, and 
reflect the dissemination limitations of this information. Documented performance on the 
benchmarks can be clearly compared with user-independent checks of the same benchmarks. 
This activity promotes a stronger user understanding of what is minimally expected from 
performance of these codes. Some examples of these commercial codes are: ANSYS with 
roughly 250 verification test cases and ABAQUS with roughly 300 test cases. The careful 
description and extensive documentation of the ANSYS and ABAQUS benchmark set is 
impressive. However, the primary goal in essentially all of these documented benchmarks is to 
demonstrate “engineering accuracy” of the codes; not to precisely and carefully quantify the 
numerical error in the solutions. As stated in one set of documentation: “In some cases, an exact 
comparison with a finite-element solution would require an infinite number of elements and/or 
an infinite number of iterations separated by an infinitely small step size. Such a comparison is 
neither practical nor desirable.” We disagree with this viewpoint on all counts: a) it does not 
require an infinite number of elements, or iterations, or infinitely small time step, and b) It is 
practical and desirable to carefully assess the accuracy of a code by comparison with 
theoretically demanding solutions. We will support our viewpoint in the body of this paper. 

Noticeably absent from our list of commercial codes are CFD software packages. A recent 
paper by Abanto et al[7] tested three unnamed commercial CFD codes on relatively simple 
verification test problems. The poor results of the codes were shocking to some people, but not to 
the authors of the paper, nor to us. Although we have not surveyed all of the major commercial 
CFD codes available, of those examined, we have not found extensive, formally documented, 
verification or validation benchmark sets for these codes. 
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A number of efforts have been undertaken in the development of validation databases that 
could mature into well-founded benchmarks. In the United States the NPARC Alliance has 
developed a validation database that has roughly twenty different flows.[8] In Europe, starting in 
the early 1990’s, there has been a much more organized effort in the development of validation 
databases, primarily focused in aerospace applications. ERCOFTAC (the European Research 
Community on Flow, Turbulence and Combustion) has collected a number of experimental 
datasets for validation.[9] QNET-CFD is a Thematic Network on Quality and Trust for the 
industrial applications of CFD.[10] This network has more than 40 participants from several 
countries who represent research establishments and many sectors of the industry, including 
commercial CFD software companies. For a history and review of the various efforts, see Rizzi 
and Vos[11] and Vos et al.[12] 

An observation that the present authors make of this work in validation databases is that 
many of the database cases are for very complex flows, sometimes referred to as “industrial 
applications.” Our experience with attempts at validation for complex physical processes, and 
our observations of many open literature activities, is that the computational results commonly 
do not compare well with the experimental measurements. Then the activity usually becomes a 
model calibration activity, or the computational analysts start pointing accusatory fingers at the 
experimentalists about either what is wrong with their data, or what they should have measured 
to make the data more effective for validation. A calibration activity can be a useful and 
pragmatic path forward for use of the calibrated model in future predictions that are very similar 
to the experimental database. However, calibration does not address the root causes of the 
weaknesses of the models because there are typically so many modeling approximations, or 
deficiencies, that could be contributing to the disagreement. We are of the view that calibration 
should be undertaken from a defined understanding of, or as a response to, V&V assessment; not 
as a replacement for V&V assessment.[13-15] 

As will be discussed in more detail in Section 2.3, Validation Activities, the construction 
and use of validation benchmarks is much more difficult than verification benchmarks. The 
primary difficulty in constructing validation benchmarks is that experimental measurements in 
the past have rarely been designed to provide true validation benchmark data. Refs. [2-4, 16-18] 
give an in-depth discussion of the characteristics of validation experiments, as well as an 
example of a wind tunnel experiment that was specifically designed to be a true validation 
benchmark. The validation benchmarks that have been complied and documented by organized 
efforts are indeed instructive and useful to users of the codes and to physics model developers. 
However, we argue in this paper that much more needs to be incorporated into the validation 
benchmarks, both experimentally and computationally, to achieve the next level of usefulness 
and impact. 

In Ref. [5], the concept of strong-sense V&V benchmarks was introduced. Oberkampf et al 
argued that strong-sense benchmarks should be of a quality that they be viewed as engineering 
reference standards. It is these authors’ experience that when there is disagreement with a 
benchmark, especially a validation benchmark, then the debate shifts to either a) questioning 
how good the benchmark is, instead of critically examining the simulations that are being 
compared with the benchmark, or b) how might physical or numerical parameters be adjusted to 
best match the experimental data. They stated that strong-sense benchmarks are test problems 
that have the following four characteristics: a) the purpose of the benchmark is clearly 
understood, b) the definition and description of the benchmark is precisely stated, c) specific 
requirements are stated for how comparisons are made with the results of the benchmark, and d) 
acceptance criteria for comparison with the benchmark are defined. In addition, they required 
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that information on each of these characteristics be “promulgated”, i.e., the information is well 
documented and publicly available. They asserted that strong-sense benchmarks (SSB) do not 
presently exist in computational physics or engineering. They suggested that professional 
societies, academic institutions, governmental organizations, or newly formed, nonprofit, 
organizations would be the most likely to construct SSBs. This paper builds on these basic ideas 
and provides detailed recommendations for the characteristics of V&V SSBs, and suggestions 
how computational simulations could be compared with the SSBs. 

 
1.2 Outline of the Paper 

 
Section 2 begins with a brief review of terminology and how different communities have 

varying interpretations of verification and validation. We then discuss how code verification is 
composed of both numerical algorithm verification activities and software quality assurance 
practices. It is pointed out that solution verification serves a different goal, that is, estimation of 
numerical discretization error and iterative solution error. Code verification procedures are 
discussed with regard to the use of highly accurate analytical solutions, manufactured solutions, 
and numerical solutions as verification benchmarks for codes. It is pointed out that validation can 
be viewed as composed of two quite different activities; assessment of computational model 
accuracy by comparison with experiment, and extrapolation of models to applications of interest 
along with the determination of their adequacy for the application of interest. The concept of a 
validation hierarchy is discussed along with its importance in assessing computational model 
accuracy at many different levels of complexity. The required characteristics of validation 
experiments are discussed, how they are different from traditional experiments, and how they 
form the central role in validation benchmarks. 

Section 3 discusses our recommendations for the design and construction of verification 
benchmarks. We discuss details of four elements that should be contained in a verification 
benchmark: a) purpose and scope of the benchmark, b) mathematical description of the 
benchmark, c) accuracy assessment of the benchmark, and d) documentation of the benchmark. 
We discuss how each of the elements applies to the four types of benchmarks: analytical 
solutions, manufactured solutions, numerical solutions to ordinary differential equations, and 
numerical solutions to partial differential equations. Although we do not recommend that results 
of comparisons with benchmarks should be included in the benchmark itself, we discuss how 
formal comparison results could be used and the types of information that should be included in 
the comparisons. We point out that making the resulting comparisons of codes with suitable 
benchmarks is an important component of the published literature in computational science and 
engineering (CS&E) and is necessary for the progressive improvement of numerical methods. 

Section 4 discusses our recommendations for the design and construction of validation 
benchmarks. We discuss details of four elements that should be contained in the validation 
benchmark: a) purpose and scope of the benchmark, b) description of the benchmark, 
experimental techniques, and facility, d) uncertainty quantification of benchmark measurements, 
and d) documentation of the benchmark. We also discuss how one should compare candidate 
code results with the benchmark results, paying particular attention to issues of: computation of 
nondeterministic results to determine the uncertainty of system response quantities due to 
uncertainties in input quantities, computation of validation metrics to quantitatively measure the 
difference between experimental and computational results, the minimization of model 
calibration in comparing with validation benchmarks, and the constructive roll of global 
sensitivity analyses in validation experiments. 
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Section 5 discusses a diverse set of issues concerning how a V&V benchmark database 
might be initiated, implemented, and contribute to CS&E. Examples of some of these issues are: 
primary and secondary goals of the database; initial construction of an internet-based system; 
software construction of the database; review and approval procedures for entries into the 
database; open versus restricted use of the database; organizational control of the database; and, 
possible initial and long term funding of the database. 

Closing remarks and possible future steps toward construction of a V&V benchmark 
database are given in Section 6. 

 
2. Review of Verification and Validation Processes 

 
There are a wide variety of different meanings used for V&V in the various technical 

disciplines. The Institute of Electrical and Electronics Engineers (IEEE) was the first major 
engineering society to develop formal definitions for V&V.[19] These definitions, initially 
published in 1984, were adopted and associated procedures were developed by the software 
quality assurance community, the International Organization for Standardization (ISO), and the 
nuclear reactor safety community.[20, 21] After a number of years of discussion and intense 
debate in the US defense and CFD communities, these definitions were found to be of limited 
value. In particular, these definitions did not speak directly to certain issues that are of particular 
importance in CS&E, such as the dominance of algorithmic issues in the numerical solution of 
partial differential equations, and the importance of comparisons of computational results with 
the “real world”. As a result, the US Department of Defense, developed an alternate set of 
definitions.[22, 23] Following with more precisely targeted definitions, the American Institute of 
Aeronautics and Astronautics (AIAA) and the American Society of Mechanical Engineers 
(ASME) adopted the following definitions:[13, 14] 

 
Verification: The process of determining that a model implementation accurately represents 

the developer’s conceptual description of the model and the solution to the model. 
 
Validation: The process of determining the degree to which a model is an accurate 

representation of the real world from the perspective of the intended uses of the model. 
 
These definitions have also been recently adopted by the United States Department of Energy 
National Nuclear Security Administration’s (NNSA) Advanced Simulation and Computing 
program (ASC).[24] For a detailed discussion of the history of the development of the 
terminology from the perspective of the CS&E communities, see Refs. [4, 5, 25, 26]. 

Verification provides evidence, or substantiation, that the conceptual model is solved 
correctly by the computer code in question. In CS&E the conceptual model, sometimes called the 
mathematical model, is typically defined by a set of partial differential or integro-differential 
equations, along with the required initial and boundary conditions. The computer code solves the 
computational model, i.e., the discrete-mathematics version, or mapping, of the conceptual 
model. The fundamental strategy in verification is to identify, quantify, and reduce errors caused 
by the mapping of the conceptual model to a computer code. Verification does not address the 
issue of whether the conceptual model has any relationship to the real world, e.g., physics. 

Validation, on the other hand, provides evidence, or substantiation, for how accurately the 
computational model simulates the real world for system responses of interest. The US 
Department of Defense, and many other organizations, must deal with complex systems 



 
 

 
- 8 - 

 

composed of physical processes, computer controlled subsystems, and strong human interaction. 
From their perspective, assessment of accuracy compared to the real world would include expert 
opinion and well-founded knowledge of experienced professionals. From the perspective of 
CS&E community, the real world is traditionally viewed to only mean experimentally measured 
quantities in a physical experiment.[13, 14] Validation activities presume that the discrete-
mathematics version of the model, which is solved by the computer code, is an accurate solution 
of the conceptual model. However, programming errors in the computer code, numerical 
algorithm deficiencies, or inaccuracies in the numerical solution, for example, may cancel one 
another in specific validation calculations and give the illusion of an accurate solution. 
Verification, thus, should be accomplished before the validation process begins so that one’s 
assessment of mathematical accuracy is not influenced by whether the agreement of the 
computational results with experimental data is “good” or “bad.” While verification is not 
simple, it is conceptually less complex than validation because it deals with mathematics and 
computer science issues. Validation, on the other hand, must address a much broader range of 
issues: assessment of the fidelity of the mathematical modeling of physical processes, assessment 
of consistency, or relevancy, of the mathematical model to the physical experiment being 
conducted, the influence of experimental diagnostic techniques on the measurements themselves, 
and estimation of experimental measurement uncertainty. Validation rests on evidence that the 
correct experiments were executed correctly, as well as evidence of mathematical accuracy of the 
computed solution, These problems are practically coupled in non-trivial ways in complex 
validation problems although they are logically distinct. As Roache[1] succinctly states, 
“Verification deals with mathematics; validation deals with physics.” 

 
2.1 Verification Activities 

 
2.1.1 Fundamentals of Verification 

Two types of verification are generally recognized and defined in computational 
simulation: code verification and solution verification.[1, 27] Recent work by Ref. [4] argues that 
code verification should be further segregated into two parts: numerical algorithm verification 
and software quality assurance (SQA). See Fig. 1. Numerical algorithm verification addresses 
the software reliability of the implementation of all of the numerical algorithms that affect the 
numerical accuracy and efficiency of the code. The major goal of numerical algorithm 
verification is to accumulate sufficient evidence to demonstrate that the numerical algorithms in 
the code are implemented correctly and functioning as intended. SQA emphasizes determining 
whether or not the code, as a part of a software system, is reliable (implemented correctly) and 
produces repeatable results on specified computer hardware and a specified software 
environment, including compilers, libraries, etc. SQA procedures are primarily needed during 
software development, testing, and modification, and secondarily during production-computing 
operations. 
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Figure 1 
Integrated View of Code Verification in Computational simulation 

[5] 
 

Unfortunately, as discussed in Ref. [28], when solving complex partial differential 
equations the distinct problems of mathematical correctness, algorithm correctness, and software 
implementation correctness are virtually impossible to decouple. For example, algorithms often 
represent non-rigorous mappings of mathematical approximations to the underlying discrete 
equations. Two examples are approximate factorization of difference operators and algorithms 
that are derived assuming high levels of continuity, when in reality they are applied to problems 
with little or no continuity of derivatives. Whether these algorithms are “correct” cannot be 
assessed in isolation from code executions, which are in turn coupled to software 
implementation. One consequence is that an “obvious” numerical inaccuracy may not be easily 
associated with one of mathematics, algorithms, or software. This suggests a greater overlap 
between SQA and the “science” of numerical computation than some practitioners feel 
comfortable with. 

Numerical algorithm verification, SQA, and solution verification are fundamentally 
empirical. Specifically, these issues are based on observations, comparisons, and analyses of the 
code results for specific input options chosen. Numerical algorithm verification centers on 
careful investigations of topics such as spatial and temporal convergence rates, iterative 
convergence, independence of solutions to coordinate transformations, and symmetry tests 
related to various types of boundary conditions. Analytical or formal error analysis is inadequate 
in numerical algorithm verification because the code must demonstrate the analytical and formal 
results of the numerical analysis. Numerical algorithm verification is conducted by comparing 
computational solutions with highly accurate solutions. We believe Roache’s description of this 
as “error evaluation” clearly distinguishes it from numerical error estimation.[29] Solution 
verification centers on estimating the numerical error for particular applications, e.g., different 
mesh resolutions, when the correct solution is not known. 

SQA procedures are very well developed, as they have been in existence for at least three 
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decades. They are a combination of software management, inspection, and testing procedures. 
However, there is ongoing debate about the precise role of SQA in CS&E, as well as on the 
efficacy of particular SQA strategies and methods.[28, 30, 31] Trucano et al.[28] emphasize 
three areas that are ripe for developing precise overlap between SQE and CS&E V&V: (1) 
testing; (2) software lifecycle definition; and (3) code accreditation. The latter issue is firmly in 
the orbit of the current paper, although we do not explicitly discuss it. 

Fig. 1 depicts a top-down process with two main branches of code verification: numerical 
algorithm verification and SQA practices.[5] Numerical algorithm verification, discussed in 
Section 2.1.2, focuses on the accumulation of evidence to demonstrate that the numerical 
algorithms in the code are implemented correctly and functioning properly. The main technique 
used in numerical algorithm verification is testing, which is alternately referred to in this paper as 
numerical algorithm testing or algorithm testing. SQA activities include practices, procedures 
and processes primarily developed by researchers and practitioners in the computer science and 
IEEE communities. Conventional SQA emphasizes processes (management, planning, 
acquisition, supply, development, operation, and maintenance), as well as reporting, 
administrative, and documentation requirements. One of the key elements of SQA is 
configuration management of the software: configuration identification, configuration and 
change control, and configuration status accounting. These activities are primarily directed 
toward programming correctness in the source program, system software, and compiler software. 
As shown in Fig. 1, software quality analysis and testing can be divided into static analysis, 
dynamic testing, and formal analysis. Dynamic testing further divides into such elements of 
common practice as regression testing, black-box testing, and glass-box testing. From a SQA 
perspective, one could reorganize Fig. 1 such that all of the activities listed on the left, under 
Numerical Algorithm Verification, could be moved under dynamic testing. However, the 
computer science and IEEE communities have shown no formal interest in the development of 
these activities. These activities, on the other hand, dominate code development practice in the 
traditional CS&E communities. 

A recent comprehensive analysis of the quality of scientific software by Hatton[32] 
documented, to the disbelief of many, a dismal picture of code verification. Hatton studied more 
than 100 scientific codes over a period of seven years using both static analysis and dynamic 
testing. The codes were submitted primarily by companies, but also by government agencies and 
universities from around the world. These codes covered 40 application areas, including 
graphics, nuclear engineering, mechanical engineering, chemical engineering, civil engineering, 
communications, databases, medical systems, and aerospace. Both safety-critical and non-safety-
critical codes were comprehensively represented. All codes were “mature” in the sense that the 
codes were regularly used by their intended users, i.e., the codes had been approved for 
production use. The total number of lines of code analyzed in Fortran 66 and 77 was 1.7 million 
and the total number of lines analyzed in C was 1.4 million. As the major conclusion in his 
study, Hatton stated, “The T experiments suggest that the results of scientific calculations carried 
out by many software packages should be treated with the same measure of disbelief researchers 
have traditionally attached to the results of unconfirmed physical experiments.” Hatton’s 
conclusion is disappointing, but not at all surprising in our view. 

Solution verification centers on the quantitative estimation of the numerical accuracy of a 
given solution to the PDEs. Because, in our opinion, the primary emphasis in solution 
verification is significantly different from that in numerical algorithm verification and SQA, we 
believe solution verification should be referred to as numerical error estimation. That is, the 
primary goal is attempting to estimate the numerical accuracy of a given solution, typically for a 
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nonlinear PDE with singularities and discontinuities. Assessment of numerical accuracy is the 
key issue in computations used for validation activities, as well as in use of the code for the 
intended application. Numerical error estimation is strongly dependent on the quality and 
completeness of code verification. 

The two basic approaches for estimating the error in a numerical solution to a PDE are a 
priori and a posteriori error estimation techniques. An a priori approach uses only information 
about the numerical algorithm that approximates the partial differential operators and the given 
initial and boundary conditions. A priori error estimation is a significant element of classical 
numerical analysis for PDEs, especially those underlying the finite element and finite volume 
methods.[1, 33-38] An a posteriori approach uses all of the a priori information, plus 
computational results from previous numerical solutions, e.g., solutions using different mesh 
resolutions or solutions using different order of accuracy methods. We believe the only 
quantitative assessment of numerical error that can be achieved in practical cases of nonlinear, 
complex, PDEs is through a posteriori error estimates. 

A posteriori error estimation has primarily been approached through the use of either 
Richardson extrapolation[1] or estimation techniques based on finite element 
approximations.[39, 40] Richardson extrapolation uses solutions on multiply refined meshes to 
estimate the spatial discretization error. It can also be used on multiply refined time-step 
solutions to estimate temporal discretization error. Richardson’s method can be applied to any 
discretization procedure for differential or integral equations, e.g., finite difference methods, 
finite element methods, finite volume methods, spectral methods, and boundary element 
methods. As pointed out by Roache,[1] Richardson’s method produces different estimates of 
error and uses different norms than the traditional a posteriori error methods used in finite 
elements.[35, 41] A Grid Convergence Index (GCI), based on Richardson’s extrapolation, has 
been developed by Roache to assist in the estimation of grid convergence error.[1, 42, 43] 

Although SQA and solution verification are quite important, a detailed discussion of these 
topics is beyond the scope of this paper. For further discussion of SQA issues, see, for example, 
Refs. [5, 44-46]. For further discussions of numerical error estimation, see, for example, Refs. [1, 
33-38, 47-50]. 

 
2.1.2 Code Verification Procedures 

From the perspective of the numerical solution of PDEs, the major components of code 
verification include the definition of appropriate benchmarks for evaluating solution accuracy 
and the determination of satisfactory performance of the algorithms on the benchmarks. Code 
verification rests upon comparing computational solutions to the “correct answer,” which is 
provided by highly accurate solutions for a set of well-chosen benchmarks. The correct answer 
can only be known in a relatively small number of isolated cases. These cases therefore assume a 
very important role in verification and should be carefully formalized in test plans for 
verification assessment of the code. 

Figure 2 depicts a method for detecting numerical algorithm deficiencies and programming 
errors by using verification benchmarks. The conceptual model, or mathematical model, is 
derived from the physics of interest and the mathematical assumptions made in constructing the 
model. Since we are interested in benchmark solutions, the conceptual model is chosen by what 
exact or highly accurate solutions are known, or new ones that can be generated. The conceptual 
model is typically given by a set of PDEs and all of the associated input data, e.g., initial 
conditions, boundary conditions, material properties, nuclear cross-sections, etc. These equations 
are discretized, i.e., mapped from derivatives and integrals to algebraic equations, using the 
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numerical algorithms chosen. The discretized equations are programmed in the computer code. 
When the code is exercised by solving the benchmark problem, then the code produces 
computational results of interest. The results from the code are then compared with the 
benchmark solution results to evaluate the differences that occur. The comparisons are usually 
examined along boundaries of interest or error norms computed over the entire solution domain. 
The accuracy of each of the dependent variables or functionals of interest can be determined as 
part of the comparisons. 

 

 
 

Figure 2 
Method to Detect Sources of Errors in Code Verification 

 
Probably the most important issue in the design and computation of verification 

benchmarks is the mathematical accuracy of the benchmark solution. The AIAA Guide,[13] 
suggests the following hierarchical organization of confidence or accuracy of benchmarks (from 
highest to lowest): (1) analytical solutions, (2) highly accurate ordinary differential equation 
numerical solutions, and (3) highly accurate numerical solutions to PDEs. Analytical solutions 
are closed-form solutions to special cases of the PDEs that define the conceptual model. These 
closed-form solutions are commonly represented by infinite series, complex integrals, and 
asymptotic expansions. Relatively simple numerical methods are usually used to compute the 
infinite series, complex integrals, and asymptotic expansions in order to obtain the solutions of 
interest. The accuracy of these solutions, particularly if they are infinite series or asymptotic 
expansions, must be carefully quantified, which can be very challenging. The most significant 
practical shortcoming of classical analytical solutions is that they exist only for very simplified 
physics, material properties, and geometries. 

The second type of highly accurate solution is the numerical solution to special cases of the 
general PDEs that can be mathematically simplified to ordinary differential equations (ODE). 
The ODEs can be either initial value problems or boundary value problems. These solutions 
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commonly result from simplifying assumptions, such as simple geometries that allow formation 
of similarity variables. Once an ODE is obtained, then a highly accurate ODE solver can 
compute the numerical solution. Highly accurate ODE solvers typically employ both variable 
integration-step and variable order of accuracy numerical methods. In fluid dynamics, some well 
known ODE benchmarks are stagnation point flow, laminar flow in two and three dimensions, 
Taylor-Maccoll solution for inviscid flow over a sharp cone, and Blasius solution for laminar 
flow over a flat plate. Note that the Blasius solution would be a useful benchmark for assessing 
the accuracy of CFD code that solves the boundary layer equations. However, it would not be a 
good benchmark for testing a Navier-Stokes code because the Blasius solution also relies on the 
approximations assumed in the boundary layer theory. As would be expected, there would be a 
difference between a highly accurate Blasius solution and a highly accurate Navier-Stokes 
solution because of the different modeling assumptions involved in each. The modeling 
assumptions must be the same between the benchmark solution and the code being tested. The 
only question that should be answered in Fig. 2 is related to numerical accuracy and correctness 
of the code being tested. 

The third type of highly accurate solution is numerical solution to more complex PDEs, 
i.e., more complex than those obtained from analytical solutions or ODE numerical solutions. 
The accuracy of these type benchmark solutions clearly becomes a more questionable issue 
compared to analytical solutions or ODE solutions. In the literature, for example, one can find 
descriptions of computational simulations that are considered to be “benchmark solutions” by the 
author, but are later found to be lacking. Although it is common practice to conduct code-to-code 
comparisons, we argue that these types of comparisons are of very limited value unless highly 
demanding requirements are imposed on the numerical solution that is considered as the 
“benchmark.”[51] These requirements will be discussed in detail in section 3.1 

During the last decade a technique has been developed for constructing a special type of 
analytical solution that is specifically used for testing numerical algorithms and computer codes; 
it is referred to as the “Method of Manufactured Solutions” (MMS).[1, 52] The MMS is a 
method of custom-designing verification benchmarks of wide applicability, where a specific 
form of the solution function is assumed to satisfy the PDE of interest, rather than a major 
simplification of the PDE of interest. This function is inserted into the PDE, and all the 
derivatives are analytically derived. Typically these derivatives are derived by using symbolic 
manipulation software such as MATLAB® or Mathematica®. The equation is rearranged such 
that all remaining terms in excess of the terms in the original PDE are grouped into a forcing-
function or source term. This source term is then added to the original PDE so that the assumed 
solution function satisfies the new PDE exactly. When this source term is added to the original 
PDE, one recognizes that we are no longer dealing with physically meaningful phenomena, 
although we remain in the domain of mathematical interest. This realization can cause some 
researchers or analysts to claim that the solution is no longer relevant to computational 
simulation. The fallacy of this argument is emphasized by noting that in verification we are only 
dealing with testing of the numerical algorithms and coding: not the relationship of the code 
results to physical responses of the system. Since the solution to the modified PDE was 
“manufactured”, the boundary conditions for the new PDE are analytically derived from the 
solution chosen. For the three types of common boundary conditions, one can use the chosen 
solution function to: a) simply evaluate solution on any boundary of interest, i.e., a Dirichlet 
condition, b) analytically derive a Neumann type boundary condition and apply it on any 
boundary, and c) analytically derive a boundary condition of the third kind and apply it on any 
boundary. MMS could be described as finding the problem, i.e., the PDE, for which we have 
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assumed a solution. 
Using MMS in code verification requires the ability to insert the analytically derived source 

term and boundary conditions into the code being tested, and that this insertion be verified in the 
sense of code verification. This technique verifies a large number of numerical aspects in the 
code, such as, the numerical method, differencing or finite element technique, spatial-
transformation technique for grid generation, grid-spacing technique, and correctness of 
algorithm coding. Although the MMS has been used in various forms for checking computer 
codes for a number of years, recent extensions and generalizations of the method have proven 
very effective. As pointed out by a number of researchers in this topic, solutions in MMS must 
be carefully chosen to achieve the desired test results. For example, solutions should be chosen 
so that as many terms as possible in the original PDE are brought into play. This includes any 
submodels affecting terms in the original PDE, as well as any mathematical transformations of 
physical space to computational space. MMS has proven to be so effective that we will 
specifically add it to the list of three types of highly accurate solutions described earlier in this 
section. 

In code verification the key feature to determine is the observed, or demonstrated, order of 
accuracy from multiple numerical solutions. As discussed in a number of references,[1, 52] 
Richardson extrapolation is used in combination with the known exact solution and results from 
two different mesh resolutions to determine the observed order of accuracy from a code. A 
typical plot of observed order of accuracy versus mesh resolution is shown in Fig. 3. When the 
mesh is sufficiently resolved, the numerical solution enters the asymptotic convergence region 
with regard to spatial resolution. In this region the observed order of accuracy becomes a 
constant. By computing the observed order of accuracy in testing a code one can make two 
strong statements concerning accuracy. First, if the observed order is greater than zero, then the 
code converges to the correct solution as the mesh is refined. If the observed order of accuracy is 
zero, then the code will converge to an incorrect answer. Second, if the observed order of 
accuracy matches (or nearly matches) the formal order of accuracy, then the code demonstrates 
that it can reproduce the theoretical order of accuracy of the numerical method. This statement 
belies the fact that in many practical cases, the theoretical order of accuracy of a complex code is 
actually not known rigorously, or it is a mixed order scheme. When an empirical convergence 
study is in disagreement with a claimed formal order of accuracy, it may be the case that both 
sides of this comparison must be subject to close analysis. 
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Figure 3 

Observed order of accuracy as a function of mesh resolution for two Navier-Stokes 
codes[53] 

 
Researchers have found a number of reasons why the observed order of accuracy can be 

less than the formal accuracy when the latter is rigorously known. Some of the reasons are: (1) a 
programming error exists in the computer code, (2) the numerical algorithm is deficient is some 
way, (3) insufficient grid resolution so that the grid is not in the asymptotic convergence region 
of the power series expansion for the particular system response quantity (SRQ) of interest, (4) 
the formal accuracy for interior grid points is different than the formal accuracy for boundary 
conditions with derivatives resulting in a mixed order of accuracy, (5) singularities, 
discontinuities, and contact surfaces interior to the domain of the PDE, (6) singularities and 
discontinuities in the boundary conditions, (7) highly stretched meshes, (8) inadequate 
convergence of an iterative procedure in the numerical algorithm, and (9) over-specified 
boundary conditions. It is beyond the scope of this paper to discuss these in detail, however some 
of the representative references in these topics are [1, 33, 52, 54-63]. For the types of 
benchmarks we will concentrate on in this paper, we will focus on testing candidate codes for 
reasons (1) – (4). 

 
2.2 Validation Activities 

 
2.2.1 Fundamentals of Validation 

Various researchers and engineering standards documents[4, 5, 13-15, 64] have pointed out 
that there are two key, and distinct, issues in validation: a) quantification of the accuracy of the 
conceptual model by comparisons with experimental data, and b) estimation of the accuracy of 
the conceptual model for its intended use. The definition of validation, given at the beginning of 
Section 2, is not particularly clear on the issue and, as a result, the definition has been interpreted 
to include both issues, and also been interpreted to only include the first issue. The first issue is 
typically referred to as model fidelity assessment, or assessment of validation metrics, and the 
second issue is usually referred to as adequacy assessment of the model for applications of 
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interest, or predictive capability estimation. Figure 4 depicts these two issues, as well as the input 
information these two issues require. 

 

 
 

Figure 4 
Two Aspects of Model Validation 

 
It is clear from Fig. 4 that model fidelity assessment by comparison of model results to 

experimental results is distinctively different from adequacy assessment of the model relative to 
accuracy requirements for applications that may, or may not, be very well defined. The most 
recent engineering standards document dealing with V&V, referred to as the ASME Guide[14] 
takes the view that both aspects of validation are fundamentally combined in the term 
“validation.” The AIAA Guide,[13] however, takes the view that “validation” only deals with the 
first aspect; assessment of model accuracy, with no implication that model accuracy is “good” or 
“bad”. Uncertainty is involved in the assessment, both in terms of experimental measurement 
uncertainty and in terms of the computational simulation, primarily because input quantities 
needed from the experiment are not available. The second aspect is regarded as a separate 
activity related to predictive capability. Stated differently, the AIAA Guide takes the perspective 
that predictive capability uses assessed model accuracy as input, but predictive capability also 
incorporates: a) additional uncertainty estimation resulting from extrapolation of the model 
beyond the existing experimental database to future applications of interest, and b) comparison 
of the accuracy requirements needed by a particular application relative to the estimated 
accuracy of the model for that specific applications of interest. Both perspectives are useful and 
workable, but the terminology clearly means different things and, as a result, one must be careful 
in discussions and writing on the subject. 

Work by the ecological community[65, 66] and recent work by the hydrology 
community[67] in Europe have independently developed very similar ideas to those being 
developed in the US with regard to V&V. Rykiel[65] makes a important practical point, 
especially to analysts and decision makers, concerning the difference between the philosophy of 
science viewpoint and the practitioner’s view of validation: “Validation is not a procedure for 
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testing scientific theory or for certifying the ‘truth’ of current scientific understanding … 
Validation means that a model is acceptable for its intended use because it meets specified 
performance requirements.” Refsgaard and Henriksen[67] have recommended terminology and 
fundamental procedures for V&V that are applicable to a much wider range of simulations than 
just hydrological modeling. Their definition of validation makes the two aspects of validation in 
Fig. 4 quite clear: “Model Validation: Substantiation that a model within its domain of 
applicability possesses a satisfactory range of accuracy consistent with the intended application 
of the model.” An additional crucial issue stressed by Refsgaard and Henriksen, and 
corroborated by both the AIAA and ASME Guides, is: “Validation tests against independent data 
that have not also been used for calibration are necessary in order to be able to document the 
predictive capability of a model.” Stated differently, the key issue in validation is assessment of 
the model in a “blind” test with experimental data, whereas the key issue in calibration is 
adjustment of physical modeling parameters to improve agreement with experimental data. It is 
difficult, and sometimes impossible, to make blind comparisons, e.g., when well-known 
benchmark validation data is available for comparison. However, we must be extremely cautious 
in making conclusions of predictive accuracy of models when the analyst has seen the data. 
Knowing the “correct answer” before hand is extremely seductive, even to a saint. 

An additional fundamental, as well as practical, aspect of validation in a real engineering 
environment has been the introduction of the concept of a validation hierarchy.[13, 14] Because 
of the infeasibility and impracticality of conducting true validation experiments on most complex 
or large scale systems, the recommended method (and we would agree that it is logically 
necessary) is to use a building-block approach. This approach divides the complex engineering 
system of interest into three or more progressively simpler tiers: subsystem cases, benchmark 
cases, and unit problems. In the reactor safety field a very similar concept has been used for 
some time and it is usually referred to as separate effects testing. The strategy in the tiered 
approach is to assess how accurately the computational results compare with the experimental 
data at multiple degrees of physics coupling and geometric complexity. The approach is 
extremely useful in that: (1) it recognizes that there is a hierarchy of complexity in systems, 
physics and geometry, (2) the hierarchy requires a very wide range of experienced individuals to 
construct it; often discovering subsystem or component interactions that had not been recognized 
before, (3) models, or submodels, can be tested at any of the tiers of complexity, and (4) it 
recognizes that the quantity, accuracy and cost of information that is obtained from experiments 
varies radically over the range of tiers. Each comparison of computational results with 
experimental data allows an inference of model accuracy concerning tiers both above and below 
the tier where the comparison is made. The construction and use of the validation hierarchy is 
particularly important in situations were the complete system of interest cannot be tested. For 
example, in the nuclear power industry very similar ideas to the validation hierarchy have been 
used in safety studies and probabilistic risk assessment for abnormal environment scenarios. 

An example of a hierarchical structure for a complex, multidisciplinary system was 
presented in Ref. [68]. The example features an air-breathing, hypersonic cruise missile. The 
missile is assumed to have an autonomous guidance, navigation, and control (GNC) system, an 
on-board optical target seeker, and a warhead. Figure 5 shows the system-level hierarchical 
validation structure for the hypersonic cruise missile. The missile is referred to as the complete 
system, and the following are referred to as systems: propulsion, airframe, GNC, and warhead. 
The hierarchy shown is not unique, nor is it necessarily optimum for every computational-
simulation perspective of the missile system. In addition, the structure shown in Fig. 5 focuses on 
the airframe system and the aero/thermal protection subsystem for the purpose of analyzing the 
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aero/thermal performance of the missile. 
 

 
Figure 5 

Validation Hierarchy for a Hypersonic Cruise Missile[68] 
 

2.2.2 Characteristics of Validation Experiments 
With the critical role that validation experiments play in assessment of model accuracy and 

predictive capability, it is fair to ask: Exactly what is a validation experiment? Or, How is a 
validation experiment different from other experiments? In an attempt to answer these questions, 
we first suggest that traditional experiments could generally be grouped into three categories. 
The first category comprises experiments that are conducted primarily to improve the 
fundamental understanding of some physical process. Sometimes these are referred to as 
physical-discovery experiments. The second category of traditional experiments consists of those 
conducted primarily for constructing or improving mathematical models of fairly well 
understood physical processes. Sometimes these are referred to as model calibration 
experiments. The third category of traditional experiments includes those that determine or 
improve the reliability, performance, or safety of components, subsystems, or complete systems. 
These experiments are sometimes called “proof tests” or “system performance tests.” 

The present authors and colleagues[2, 3, 16, 69-73] have argued that validation 
experiments constitute a new type of experiment. A validation experiment is conducted for the 
primary purpose of determining the predictive accuracy of a computational model, or group of 
models. In other words, a validation experiment is designed, executed, and analyzed for the 
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purpose of quantitatively determining the ability of a mathematical model and its embodiment in 
a computer code to simulate a well-characterized physical process. Thus, in a validation 
experiment “the code is the customer” or, if you like, “the computational analyst is the 
customer.” Only during the last 10 to 20 years has computational simulation matured to the point 
where it could even be considered as a customer in this sense. As modern technology 
increasingly moves toward engineering systems that are designed, and possibly even fielded, 
based predominately on CS&E, then CS&E itself will increasingly become the customer of 
experiments. 

We argue that there are three aspects that should be used to optimize the effectiveness and 
value of validation experiments: (1) early in the planning process, define the goals and the 
expected results of the validation activity, (2) design the validation experiment by using the code 
in a predictive sense and also account for the capability limitations of the experimental facility, 
and (3) develop a well-thought-out plan for analyzing and quantitatively comparing the 
computational and experimental results.[73] The first aspect, defining the goals and expected 
results, deals with issues, such as: clear determination how the validation activity relates to the 
application of interest (typically through the validation hierarchy); identification of what physics 
modeling issues are being tested; deciding if the validation activity intended to severely test the 
model or make the model look good; specification of what is required from both the 
computational and experimental aspects of the validation activity to conclude that each aspect 
was deemed a “success;” and laying out the steps that would be taken if the model (or the 
experimental results) looks surprisingly good or surprisingly bad. 

In the second aspect above, “design” means using the code to directly guide design features 
of the experiment, such as: geometry, initial and boundary conditions, material properties, sensor 
locations, and diagnostic techniques, e.g. strain gauges, thermocouples, optical techniques, and 
radiation detectors. Even if the accuracy of the code predictions is not expected to be high, the 
code can frequently guide much of the design of the experiment. Using the code, and the goals of 
the validation activity, one can also guide the required accuracy needed of the experimental 
measurements, or the number of experimental realizations needed to obtain a specific statistical 
result. Suppose, through a series of exploratory calculations for a particular application of the 
code, an unexpectedly high sensitivity to certain physical parameters is found. If this unexpected 
sensitivity has an important impact on the application of interest, a change in the design of the 
validation experiment may be needed, or indeed, a completely separate validation experiment 
may be called for. Also, the limitation of the experimental facility should be directly factored 
into the design of the experiment. Examples of facility or diagnostic limitations are: inability to 
obtain the range of parameters, e.g., load, temperature, velocity, time, radiation flux, needed to 
meet the goals of testing the model, inability to obtain the needed accuracy of measurements 
(both system response quantities and model input quantities), and inability to measure all of the 
needed input quantaties, e.g., initial conditions, boundary conditions, material properties, needed 
for the code simulation. 

The third aspect above refers to the importance of rigorously analyzing and quantitatively 
comparing the computational and experimental results. As shown in top portion of Fig. 4, this 
type of quantitative comparison is now called a validation metric and is an active topic of 
research.[4, 74-79] Validation metrics use statistical procedures to compare the results of code 
calculations with the measurements of validation experiments. Because we emphasize that the 
overarching goal of validation experiments is to develop quantitative confidence so that the code 
can be used for its intended application, we have argued the central role of validation metrics. 
Stated differently, we believe predictive capability should be built directly on quantitative 
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measures of agreement that have been demonstrated in previous assessments of the model using 
experimental data, as opposed to obscure or vague declarations that the model is “valid,” and 
then making predictions. In the statistical inference literature, there has been a long history of the 
development of statistical procedures for closely related inference tasks. However, most of these 
procedures yield either probabilistic measures of agreement, such as hypothesis testing, or they 
are directed at calibration of models, such as Bayesian updating. 

As proposed in Refs. [78, 79], we currently believe that useful validation metrics should 
include several characteristics. Some of the recommended characteristics concerning a metric 
are: (1) explicitly include an estimate of the numerical error in the computed system response 
quantity (SRQ), or exclude the numerical error because it has been demonstrated to be small 
relative to the measurement uncertainty, (2) include in some explicit way an estimate of the 
measurement uncertainty in the experimental data for the system response quantities of interest, 
(3) depend on the number of experimental measurements that have been made of the SRQ, e.g., 
multiple replications of the measurements of the SRQ, and multiple measurements of a SRQ 
over a range of input quantities, and (4) exclude any indications, either explicit or implicit, of the 
level of adequacy of agreement between computational and experimental results. This last 
recommendation refers to the common practice of declaring the computational results “valid” if 
the results pass through the uncertainty bands of the experimental measurements. 

During the past several years, a group of researchers at Sandia National Laboratories has 
been developing methodological guidelines and procedures for designing and conducting a 
validation experiment.[2-4, 16, 69-73] These guidelines and procedures have emerged as part of 
a concerted effort in the NNSA ASC program to provide a rigorous foundation for V&V for 
computer codes that are important elements of the U.S. nuclear weapons program.[80] 
Historically, they were first developed in their current form in a joint computational and 
experimental program conducted in a wind tunnel, however, they apply over a wide range of 
CS&E.  

 
Guideline 1: A validation experiment should be jointly designed by experimentalists, model 

developers, code developers, and code users working closely together throughout the 
program, from inception to documentation, with complete candor about the strengths and 
weaknesses of each approach. 

Guideline 2: A validation experiment should be designed to capture the essential physics of 
interest, including all relevant physical modeling data and initial and boundary conditions 
required by the code. 

Guideline 3: A validation experiment should strive to emphasize the inherent synergism 
between computational and experimental approaches. 

Guideline 4: Although the experimental design should be developed cooperatively, 
independence must be maintained in obtaining both the computational and experimental 
results. 

Guideline 5: A hierarchy of experimental measurements of increasing computational 
difficulty and specificity should be made, for example, from globally integrated 
quantities to local measurements. 

Guideline 6: The experimental design should be constructed to analyze and estimate the 
components of random (precision) and bias (systematic) experimental errors. 

 
These guidelines are applicable to any tier in the validation hierarchy discussed with regard to 
Fig. 5. A detailed discussion of each of these six guidelines is beyond the scope of the present 
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work. The reader is referred to the given references for an in-depth discussion of what these 
guidelines mean, how they can be implemented, and the difficulties that can be encountered. 
Some of these guidelines will be incorporated into the recommendations for the construction of 
validation benchmarks, Section 4.1. 
 

3. Recommendations for Verification Benchmarks 
 
The discussion of SSBs in verification, as well as in validation, is divided into the 

recommended features of the benchmark itself and how one should compare a code being tested 
(referred to as the candidate code) to the benchmark results. The characteristics we recommend 
here for SSBs are not discipline specific, but can be applied to many fields of physics and 
engineering. 

 
3.1 Construction of Verification Benchmarks 
 

As discussed in Section 1.1, Introduction, Ref. [5] suggested three characteristics for the 
construction of a SSB: a) the purpose of the benchmark should be clearly stated, b) the definition 
and description of the benchmark should be precisely stated, and c) the benchmark should be 
well documented. We agree with these characteristics and we add an additional characteristic 
that should be incorporated in their construction: d) the accuracy of the benchmark should be 
carefully assessed and the pedigree of the evidence should be explained in detail. 

 
3.1.1 Purpose and Scope of the Benchmark 

The description given in the purpose and scope of the benchmark should be a textual 
description: no equations or symbols. The reason for this is that we believe that an electronic 
database of verification benchmarks should be constructed in the future, similar to the ideas 
expressed by Rizzi and Vos discuss.[11] With an electronic database, one could search the 
database for key words that would assist in finding those benchmarks that could be applicable to 
particular problems of interest. In addition, the purpose and scope of the benchmark should be 
described from various perspectives. 

The first perspective of the information given in the description is the general class of 
physical process being modeling in the benchmark. For example, in fluid dynamics the 
description should give the general characteristics such as: steady vs. unsteady, class of fluid 
assumed (e.g., continuum vs. non-continuum, viscous or inviscid, Newtonian vs. non-Newtonian, 
Reynolds-Averaged Navier-Stokes equations vs. large eddy simulation vs. direct numerical 
simulation, compressible vs. incompressible, single phase vs. multi-phase), spatial 
dimensionality and what coordinate system is used, perfect gas, and all auxiliary models that are 
assumed (e.g., assumptions for a gas with vibrationally excited molecules, chemically reacting 
gas assumptions, thermodynamic property assumptions, transport property assumptions, 
assumptions on chemical models, reactions, and rates, and turbulence model assumptions.) In 
solid dynamics, for example, the description should include equations of state assumptions, such 
as choice of independent variables in tables, solid behavior assumptions varying from elasticity 
to visco-plasticity, assumptions about material failure, and assumptions about mixture behavior 
for complex non-homogeneous materials. Note that the description should be with respect to the 
class of physics that is modeled in the benchmark, not the actual physics of interest. 

Second, the benchmark description should include the initial conditions and boundary 
conditions exactly as they were characterized in the benchmark. Some examples in fluid 
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dynamics are: steady state flow between parallel plates with infinite dimension in the plane of 
the plates, flow over a circular cylinder of infinite length with undisturbed flow far from the 
cylinder, and flow over an impulsively started cube in an initially undisturbed flow. Some 
examples in solid dynamics are: externally applied loads or damping, contact models, joint 
models, explosive loads or impulsive loads, and impact conditions (geometry and velocity). 
Included with boundary conditions would be a statement of all of the pertinent geometry 
dimensions, or non-dimensional parameters characterizing the problem, if any. In the statement 
of “infinity” boundary conditions, it must be clearly stated exactly what was used in the 
benchmark. For example, if the numerical solution benchmark imposed an undisturbed flow 
condition at some finite distance from an object in a fluid, then that should be carefully 
described. However, one could also impose an undisturbed flow condition at infinity using 
coordinate stretching away from the object by mapping infinity to a finite point. 

Third, the benchmark description should include the types of physical applications the 
benchmark is relevant to. Some examples in fluid dynamics are: laminar wake flows, turbulent 
boundary layer separation over a smooth surface, impulsively started flows, laminar diffusion 
flames, shock/boundary layer separation, and natural convection in an enclosed space. Some 
examples in solid dynamics are: linear structural response under impulsive loading, wave 
propagation excited by energy sources, explosive fragmentation, crater formation and evolution, 
and penetration events. This type of information in the description will be particularly useful to 
individuals searching for benchmarks that are more or less related to their actual application of 
interest. 

Fourth, it should be stated what type of benchmark this is. As discussed in section 2.1.2, 
Code Verification Procedures, it is quite important to state if it is: (1) an analytical solution, (2) a 
manufactured solution, (3) an ODE numerical solution, or (4) a PDE numerical solution. If the 
benchmark is a type 1 or type 2, then one must be able to accurately compute the observed order 
of accuracy of the candidate code. If the benchmark is a type 3 or type 4, then it is doubtful that 
the observed order of accuracy can be computed for the candidate code because the accuracy of 
the numerical solutions from the benchmark will probably not be adequate. As a result, only an 
accuracy assessment of SRQs of interest from the candidate solutions could be made by 
comparison with the benchmark solution. 

And fifth, the benchmark should state what numerical algorithm or software quality issues 
are being tested. Some examples are: test of the numerical method to capture a strong shock 
wave in three dimensions, test to determine if the numerical method can accurately approximate 
specific types of discontinuities or singularities that occur either within the solution domain or on 
the boundary, test of the numerical method to compute re-contact during large plastic 
deformation of a structure, test of the numerical method in computing a denotation front in a 
granular mixture, and test of the numerical method in computing shock-induced phase 
transitions. In this facet of the description one should also include if any type of physics coupling 
is being tested by using the benchmark. For example, does the benchmark test the coupling of a 
shock wave and chemically reacting flow, or does the benchmark test the coupling of thermal 
stresses in addition to mechanical stresses during large plastic deformation of a structure? Or 
does the method test only an isolated physics phenomenon? 

To better clarify how these five descriptive perspectives would be applied in practice, we 
will discuss four different types of benchmarks in fluid dynamics: 

 
Type 1 Benchmark Example (Ref. [81]) 
Title: Unsteady, incompressible, laminar, Couette flow, using the Navier-Stokes equations 
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Initial Conditions and Boundary Conditions: Initial-boundary value problem, two-
dimensional Cartesian coordinates, impulsive flow between flat plates, one plate 
instantaneously accelerates relative to a stationary plate with the fluid initially at rest. 

Related Physical Problems: Impulsively-started, laminar flows 
Type of Benchmark: Analytical solution given by an infinite series 
Numerical and/or Code Features Tested: Interaction of inertial and convective terms in one 

dimension; initial value singularity on one boundary at time zero. 
 
Type 2 Benchmark Example (Ref. [82-84]) 
Title: Steady, incompressible, turbulent flow, using one and two-equation turbulence models 

for the Reynolds-Averaged-Navier-Stokes equations 
Initial Conditions and Boundary Conditions: Boundary value problem, two-dimensional 

Cartesian coordinates, arbitrary boundary geometry, boundary conditions of the first, 
second, and third kind can be specified. 

Related Physical Problems: Incompressible, internal or external turbulent flows, wall-
bounded and free-shear-layer turbulent flows. 

Type of Benchmark: Manufactured solution given with source terms to be added 
Numerical and/or Code Features Tested: Interaction of inertial, convective, and turbulence 

terms in two Cartesian dimensions for RANS models. 
 
Type 3 Benchmark Example (Ref. [81]) 
Title: Steady, incompressible, laminar flow of a boundary layer for a Newtonian fluid 
Initial Conditions and Boundary Conditions: Initial-boundary value problem, in two-

dimensional Cartesian coordinates, flow over a flat plate with zero pressure gradient. 
Related Physical Problems: Attached, laminar boundary layer growth with no separation. 
Type of Benchmark: Blasius solution; numerical solution of a two-point boundary value 

problem 
Numerical and/or Code Features Tested: Interaction of viscous and convective terms in a 

boundary layer attached to a flat surface. 
 
Type 4 Benchmark Example (Ref. [85]) 
Title: Steady, incompressible, laminar flow using the Navier-Stokes equations 
Initial Conditions and Boundary Conditions: Boundary value problem, two-dimensional 

Cartesian coordinates, flow inside a square cavity with one wall moving at constant speed 
(except near each moving wall corner), Rl=104. 

Related Physical Problems: Attached laminar flow with separation, laminar free-shear layer, 
flow with multiply induced vortices. 

Type of Benchmark: Numerical solution given by a finite element solution 
Numerical and/or Code Features Tested: Interaction of viscous and convective terms in two 

dimensions; two-points on the boundary that are nearly singular. 
 

3.1.2 Mathematical Description of the Benchmark 
A clear and complete description should be given of the partial differential or ordinary 

differential equations for the mathematical problem being solved. We want to stress here that the 
mathematical description of the benchmark must not include any feature of the discretization or 
numerical methods used to solve the PDEs and ODEs. The mathematical description should 
include: 
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a) Clearly state all of the assumptions used to formulate the mathematical problem 

description. 
b) Define all symbols used in the mathematical description of the benchmark, including any 

non-dimensionalization used, and units of all dimensional quantities. 
c) State the PDEs, ODEs, or integral equations being solved, including all secondary 

models, or submodels. The statement of these models must be given in differential and/or 
integral form, not in discretized form. Some examples of secondary models that would be 
given are: equation of state, thermodynamic models, transport property models, chemical 
reaction models, turbulence models, emissivity models, constitutive models for materials, 
material contact models, externally applied loads, opacity models, neutron cross-section 
models, etc.  

d) Give a complete and unambiguous statement of all of the initial conditions and boundary 
conditions used in continuum mathematics form. The stated initial conditions and 
boundary conditions are those that are actually used for the solution to the PDEs and 
ODEs, not those that one would like to use in some practical application of the 
computational model. For example, if the benchmark solution is a numerical solution of a 
PDE, a type 4 benchmark, and the numerical solutions uses an outflow boundary 
condition imposed at a finite distance from the flow region of interest, then that condition 
(in continuum mathematics form) should be given. 

e) State all of the system response quantities (SRQs) of interest that are produced by the 
benchmark for comparison with the candidate solutions. The SRQs could be dependent 
variables in the mathematical model, functionals of dependent variables, or various types 
of probability measures of dependent variables or functionals. Examples of functionals 
are forces and moments acting on an object in a flow field, heat flux to a surface, location 
of boundary layer separation or reattachment point or line, and location of a vortex 
center. Functionals of interest should be stated in continuum mathematics form, not 
discrete form. Examples of probability measures are probability density functions and 
cumulative distribution functions. 

f) If any quantities provided in the description of the mathematical model are uncertain, a 
precise characterization of the uncertainty of the quantity should be given. For example, 
if a quantity is given by a probability density function, then the family of distributions 
should be stated, along with all of the parameters defining a specific distribution. 

 
The overarching goal is to provide an unambiguous, reproducible mathematical 

characterization of the benchmark problem that eliminates all potential disagreement about what 
was mathematically intended. We believe that this goal must be ruthlessly pursued and achieved. 
Judgment or opinions about what mathematics is apparently intended for a benchmark, must be 
replaced with explicit specification. 

A comment should be made here about the practice of incorporating numerical 
approximations or features directly into the mathematical models of the physics. An example in 
fluid dynamics is seen in large eddy simulations (LES) of turbulence. Many researchers, but not 
all, that solve the LES equations will define the length scale of turbulence to be modeled as that 
determined by the local discretization scale used in the numerical simulation. That is, the subgrid 
turbulence scale is defined to be all spatial scales smaller that the local mesh that they happen to 
be using. An example in fracture dynamics is seen in modeling crack propagation through a 
material. Some researchers, but thankfully fewer in recent times, will define the spatial scale of 
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the crack tip to be either the same as the local mesh resolution used in a particular numerical 
solution. 

We strongly argue against the practice of connecting physical modeling scales, either 
spatial or temporal, with numerical discretization scales. Our arguments are particularly 
compelling when verification benchmarks are the issue. The reasons for our objection are two 
fold. First, combining physics modeling with numerical approximations intertwines two very 
different issues. Models of physics should be stated in a way that does not, in any way, depend 
on how the numerical solution is obtained. Mathematical models of physics should depend only 
on physics assumptions and spatial and temporal scales. Second, if one defines a physics model 
to be dependent on numerical solution approximations then as one changes numerical 
approximations, e.g., mesh resolution, the physics model, by definition, changes. Suppose one 
wanted to use a different class of numerical methods to solve the mathematical model, such as a 
higher order method, then, even with the same mesh resolution, two different numerical solutions 
would exist; neither one would have any meaning with respect to the differential equations stated 
in the mathematical model. Mixing physics modeling and numerical solution approximations is, 
in our view, as bad a mixing different dimensional units; it makes no sense. Physics modeling 
scales, typically dimensional scales in length or time, should be defined based on physical scales 
defined in the differential equations describing the process of interest. 

 
3.1.3 Accuracy Assessment of the Benchmark 

The numerical accuracy of the benchmark should be clearly assessed and the means of 
assessment should be carefully described. The assessment procedure and the accuracy 
assessment result should be described for each SRQ that is provided by the benchmark. The 
accuracy assessment should be provided, if appropriate, as a function of: a) spatial coordinate, b) 
temporal coordinate, and c) parameters provided in the solution, e.g., Reynolds number, Mach 
number, externally applied load, heat flux, and boundary condition parameter. In general, the 
accuracy assessment of the SRQs depends on all the independent variables and parameters in the 
model. The purpose of this assessment is to provide a definitive pedigree for the benchmark that 
is unambiguous and objective. This task clearly becomes more difficult as we progress from 
simpler analytic to more complex benchmarks. Perversely, in some sense pedigree is less 
noteworthy for analytic problems because it is more obvious. Whereas, it is extremely important 
for numerical PDE benchmarks exactly because it is so difficult to produce. False pedigrees 
often lie at the heart of failed, complex, benchmark efforts centered on numerical PDE solutions. 
Many managers and organizations are fond of complex, high-visibility, benchmarks, but they 
commonly turn into a mirage when the details of the benchmark are examined. 

The accuracy of the benchmark will depend greatly on the type of benchmark solution 
computed. We now discuss particular accuracy assessment issues unique to each type of 
benchmark: 

 
Type 1 Benchmark (analytical solution) 
 If the benchmark solution is given in terms of a closed-form solution, the accuracy is 

usually near machine precision. (By “closed-form solution” we mean a solution that can 
be expressed analytically in terms of a bounded number of well-known functions. We 
also presume that the derivation of the solution can be fully comprehended by the people 
who use it as a benchmark. If the derivation is incomplete or otherwise not fully available 
for critical scrutiny, it is unlikely that the benchmark will be widely used. If the analytical 
solution is given by an infinite series, then the accuracy is determined by the rate of 
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convergence and how many terms are included before the sequence is truncated. One 
cannot estimate the accuracy of these type analytical solutions by simply comparing how 
much the solution changes by adding one more term in the infinite series. If the analytical 
solution contains an integral, or iterative solution of an algebraic or transcendental 
equation, one must estimate the numerical error involved. If the benchmark is not a 
closed-form solution, then one must very carefully estimate accuracy. For example, in the 
Type 1 Benchmark Example given in Section 3.1.1, the solution for the unsteady Couette 
flow is given by an infinite series. The convergence rate of the series depends drastically 
on the time chosen. For times near zero, the convergence rate is extremely poor compared 
to large times, because of the existence of the singularity at time equal zero. 

 
Type 2 Benchmark (manufactured solutions) 
 Manufactured solutions are all composed of well-known, elementary, functions, such as 

circular functions and exponential functions. The accuracy issue in manufactured 
solutions centers on the accuracy, or reliability, of all of the source terms that are derived 
and then are placed on the right-hand-side of the PDE. The two texts[1, 52] dealing with 
MMS recommend a number of practices and procedures that are very helpful in MMS. 
Some of these are: a) do not try to derive the source terms by hand; only use symbolic 
manipulation software, such as Mathematica® or MATLAB®, to derive them; b) when 
they are derived, do not try to program them by hand; it is recommended to electronically 
copy them from the symbolic manipulator output directly into the software solving the 
PDEs; c) if one desires to check the reliability of the output from the symbolic 
manipulation software, then one should use two different software packages; and d) when 
picking the manufactured solution form and its associated free parameters, try to pick a 
solution form and it parameters so that when the solution is substituted into the original 
PDE, all of the terms in the original PDE are reasonably balanced in magnitude. 

 
Type 3 Benchmark (ODE numerical solution) 
 Benchmark solutions obtained by the numerical solution to a set of ODEs can be of two 

types, either an initial value problem (IVP) or a boundary value problem (BVP). The 
accuracy of solutions to IVPs and BVPs primarily depends on the sophistication and 
reliability of the numerical integrator used to compute the solution. For benchmark 
solutions it is recommended that a high-order accuracy integration technique be used, 
along with a variable step-size procedure that is adjusted according to a user-specified, 
per-step, relative error criterion. If possible, two different numerical integrators should be 
used and the results compared. It is recommended that the order of accuracy of the ODE 
integrator be at least 3 or 4 orders higher than the formal order of accuracy of the 
candidate solution being tested. If a fixed-order accuracy method is used, then one can 
use Richardson extrapolation to estimate the error of the numerical solution for each SRQ 
of interest. An example of an efficient, high-order accuracy procedure is an embedded 
Runge-Kutta method of order 6 or 7. Additional complexity, and inaccuracy, is 
introduced if one numerically solves a BVP. For BVPs, one must have user-specified 
control of the error along all of the boundaries where boundary conditions are specified. 
If a singularity exists along any boundary, or as an initial condition, then one must 
develop methods to estimate how the numerical error near the singularity propagates into 
the solution domain. If the singularity is very well behaved, for example, the leading edge 
singularity in the Blasius solution, then the numerical solution should not incur additional 
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error. 
 
Type 4 Benchmark (PDE numerical solution) 
 Benchmark solutions obtained by the numerical solution of a set of PDEs are, by far, the 

most questionable with regard to their accuracy assessment. Compared to the Type 1-3 
benchmarks, Type 4 benchmarks require a great deal more detail with regard to accuracy 
assessment. We will not list here all of the requirements we recommend for a Type 4 
benchmark, but we will give a sample of types of information needed so that someone 
could not only understand the estimated accuracy of the benchmark, but also to evaluate 
the strength of the procedure used to estimate the accuracy: a) Describe all of the iterative 
procedures and convergence criteria used in any aspect of the numerical solution, e.g., the 
iterative procedure and convergence criteria for iterative solution of a nonlinear BVP, 
iterative procedure and convergence criteria for intra-time-step iterations; b) Compute a 
series of solutions using at least three different mesh resolutions and use Richardson’s 
extrapolation to estimate the numerical error over the entire solution domain for each of 
the SRQs of interest. Also, using the multiple mesh resolution results, estimate the 
observed order of accuracy of the solution for each SRQ and compare it with the formal 
order of accuracy expected from the method. One could argue that some of the a 
posteriori finite element error estimation procedures, such as, recovery methods or 
residual methods, could be used instead of Richardson extrapolation.[39, 40] 

 There are some practical difficulties with most of these methods: First, some only provide 
global error norms instead of error estimates on SRQs of interest, such as error estimates 
of local dependent variables, second, some only provide error estimates to within some 
unknown constant, third, essentially none of these methods have been developed for 
nonlinear parabolic and hyperbolic PDEs, fourth, if the PDE or any sub-model is 
substantially changed, then the error estimation equation must be re-derived, and fifth, it 
is poorly understood at present how the lack of continuity of higher derivatives of 
dependent variables and how singularities affect these estimators. Experience has shown 
that Richardson extrapolation is more robust than a posteriori finite element error 
estimators, probably because Richardson extrapolation is directly based on a power series 
expansion of the SRQ of interest; c) If the benchmark problem is an IVP, compute a 
series of solutions using at least three different temporal resolutions and use Richardson’s 
extrapolation to estimate the numerical error over the entire solution domain for each of 
the SRQs of interest. Also, using the multiple solutions, estimate the observed order of 
temporal accuracy and compare it with the formal order of temporal accuracy for each 
SRQ. In estimating the temporal accuracy, one must include the coupling of the temporal 
and spatial accuracy in the Richardson extrapolation equations; d) If a singularity exists 
inside the solution domain or on any boundary, or in the initial conditions, one must 
provide strong evidence that the numerical solution is not polluted by error propagated 
away from the singularity. 

 A preferable approach, but one that is technically demanding, is to analytically eliminate 
the singularity from the problem in some fashion. An additional method that adds 
credence to a numerical solution with a singularity is to use two markedly different 
numerical methods to solve the same problem and show the results from both methods 
for all SRQs of interest. The Type 4 Benchmark Example given in Section 3.1.1, the 
driven cavity problem, is a good example of some of the difficulties encountered with 
solutions containing singularities. Prabhakar and Reddy[85]) eliminated the two 
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singularities in the moving-lid corners by replacing the fixed speed of the moving lid with 
a speed that varies spatially near each of the corners. They clearly state that if they did 
not remove the singularities, their numerical procedure did not converge. All earlier 
published solutions of the driven cavity problem, that we are aware of, did not remove 
the singularities in the corners. Just because those solutions appeared to converge with 
the singularities present, does not engender much confidence, in our view, in the accuracy 
of those solutions. 

 
3.1.4 Documentation of the Benchmark 

The documentation should include all of the information discussed in the previous three 
subsections. In addition, the documentation should include details that would possibly assist 
users of the benchmarks in the following ways: a) if the candidate solution did not satisfactorily 
compare with the benchmark, one might find some small detail in the documentation which 
could assist the user of the benchmark in discovering the cause of the discrepancy in their 
solution, b) a user of the benchmark might want to try and reproduce the results presented in the 
benchmark, particularly if the accuracy of the candidate results are expected to be comparable to 
the benchmark, yet the results differ more than expected from the benchmark, and c) an 
interested researcher might want to investigate how one might improve the accuracy, utility, or 
generality of the benchmark. 

There are several pieces of information that should be documented, regardless of the type 
of benchmark computed. Appropriate descriptions of the following should be given: a) computer 
hardware used, b) operating system and version, c) compiler type and version and any pertinent 
compiler options used, d) arithmetic precision, e) programming language used in the source 
code, f) computer run time for each of the solutions documented in the benchmark, and, of 
course, g) authorship of the benchmark results, their affiliated organizations, and possibly the 
funding agency for the work. Some of the additional information that should be included in the 
documentation differs significantly for each type of benchmark. We give some examples below: 

 
Type 1 Benchmark (analytical solution) 
 The analytical solution should be documented in the traditional form of equations and 

explanatory text. If the benchmark solution is given by an infinite series, a description 
should be given of the method used to estimate the error due to truncation of the series. If 
all the terms in the series are of the same sign, then one method that has been used is to 
compute a curve fit of the magnitude of each term as a function of the number of the term 
in the series. If the terms are of alternating sign, then a curve fit of the magnitude of the 
sum of pairs of terms can be computed. With a proper choice of functional form, the 
curve fit can then be extrapolated to infinity. Then the sum of the truncated terms can be 
computed to estimate the error due to the truncated series. 

 If the benchmark solution is given by an integral, or iterative solution of an algebraic or 
transcendental equation, the numerical method used to compute the integral and the 
iterative solution should be given. 

 Adequate references must be provided for the analytical solution, along with its 
derivation, if possible. The references should be publicly available. 

 
Type 2 Benchmark (manufactured solutions) 
 The source terms for the manufactured solution should be included in the documentation 

in two forms: a) a traditional form for analytical equations, and b) a form that is 



 
 

 
- 29 - 

 

programmed in a commonly used programming language, such as C++ or FORTRAN. 
One should be able to electronically copy the programming language form and insert it 
into a computer code, or into an input file for a code. 

 The symbolic manipulation software used to derive the source terms should be stated, 
along with the version number of the software. If two different symbolic manipulation 
software packages are used to serve as a check, then this should be stated. If this is done, 
one should be certain that each package is unrelated to the other. For example, the 
symbolic manipulation kernel in MATLAB® from the MathWorks is the same as that in 
Maple™ from Maplesoft. 

 
Type 3 Benchmark (ODE numerical solution) 
 A detailed description should be provided of the numerical method used to solve the 

ODE. If the numerical integrator is contained in a software package, then provide: a) a 
description and version number of the package, and b) information concerning what type 
of code verification has be documented on the package. If possible, the software package 
should be included in the documentation of the benchmark. 

 If any tabular data is used in any mathematical sub-model, then all of the numerical data 
should be provided, along with a description of the interpolation procedure used for the 
tabular data. 

 
Type 4 Benchmark (PDE numerical solution) 
 A detailed description should be provided of all of the numerical methods used in all 

aspects of the solution procedure. This would include a large number of details, such as: 
a) describe all of the numerical algorithms used to discretize the PDEs and all sub-
models, including any parameters or constants that might be associated with the 
numerical algorithms, e.g., artificial damping parameters, and smoothing parameters, b) if 
the geometry contains any complexity, then a detailed description should be given of the 
geometry and how it was computed, c) describe how the spatial mesh was generated, 
especially all of the clustering features of the mesh, and provide the coordinates of all 
mesh elements, d) describe how all of the multiply refined meshes are related to one 
another, for example, were the multiple meshes generated starting with the finest mesh 
and then coarsening, or was it done in reverse, e) state the formal order of accuracy of all 
of the numerical methods used to solve the PDEs, including computation of numerically 
computed Jacobians in mapping the physical space to the computational space, and any 
numerical processing procedures (such as interpolation, integration, or differencing) used 
to compute SRQs of interest, f) provide a description of the computer code, along with 
version, and a statement if the code is available for public dissemination, and g) either 
include the code verification documentation in the benchmark documentation, or provide 
references concerning what code verification has been done and documented. 

 
Documentation of each verification benchmark should be in an electronic format that is 

widely usable and robust across many computer operating systems. Adobe Portable Document 
Format (PDF) is the most commonly used and it has many desirable characteristics, but it should 
be supplemented with additional file formats for specialized information. For example, tabular 
data could be in ASCI text files or in Microsoft Excel files; high resolution digital photographs 
should be in easily usable formats, such as, tiff, PDF, and JPEG; digital video files in formats 
such as QuickTime, MPEG, or AVI; and computer software should be provided in common 
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languages such as C++, Fortran, or Java. This last item would be necessary for documenting the 
source terms in MMS. 

Discussion of how an electronic database of V&V benchmarks could be setup is discussed 
in Section 5, Implementation Issues. 

 
3.2 Comparing Candidate Code Results with Verification Benchmarks 

 
As discussed in the Introduction, Section 1, we are only interested in comparisons of a 

candidate code with a benchmark for the purpose of assessing accuracy of the results of the 
candidate code. Issues with respect to computing speed performance or robustness of the 
candidate code, are not of particular interest here. Given this context, how one would want to 
report results from comparing a candidate solution to a benchmark solution depends on the 
purpose of making the comparison. Suppose the purpose of the comparison is similar to one of 
the following: a) make a preliminary assessment of accuracy of a code that is in development, b) 
investigate the accuracy of a new numerical algorithm implemented in a code, or c) conduct a 
proprietary investigation of the accuracy of a code that is in competition with a your own 
commercial code. We would characterize all of these types of comparison as “informal,” in the 
sense that the results of the comparison are for restricted or preliminary use. 

In this paper we are interested in discussing “formal” comparisons of candidate results and 
benchmark results. Some examples of the use of formal comparisons are: a) a potential software 
customer may want to compare the accuracy obtained from competing commercial codes, b) a 
large organization that develops its own codes for internal use for high-consequence systems 
may want to determine how its codes compare with industry standard benchmarks, c) a 
governmental regulatory organization may want to require certain verification benchmarks be 
passed before a code could be used for performing work funded by that governmental 
organization, or other governmental organizations, d) an accident investigation committee may 
want to try and determine if there were any deficiencies in the software that was used to analyze 
the performance and safety of the system that failed, and e) a commercial software company may 
want to use the results of formal comparisons of its code with benchmarks in its marketing 
program. 

Even though we are interested in formal comparisons, we believe that these comparisons 
should not be included in the benchmark database. Our viewpoint is contrary to those expressed 
by Rizzi and Vos[11] and Vos et al.[12] However, one must recognize that the type of database 
they have envisioned, and those that have been constructed in Europe, are formed using a weaker 
form of benchmarks than those described here. They believe that comparison results that have 
been obtained should be included in the database, if the individuals who computed the results so 
choose. It is our view that if the benchmarks in the database are indeed SSBs, then the 
comparisons add nothing to the database. If the new solution results have met all of the stringent 
requirements for inclusion in the database, then the new solution could be included as a new 
benchmark for the same problem, or possibly replace the existing benchmark if it has a stronger 
pedigree than the existing benchmark. As discussed in Section 5, Implementation Issues, there 
must be a well defined and formal review process for deciding which solutions can be included 
in the SSB database. 

To achieve some of the goals suggested for formal comparisons, the documentation of the 
comparisons should contain much of the same information described earlier in sections 3.1.1 
through 3.1.4. The key piece of information that is of interest in the documentation is: Did the 
candidate code pass the benchmark? The most common method of answering this question is by 
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comparing a computed result for a SRQ from a candidate code with the comparable result from a 
SSB. Although this comparison is useful, it has two significant disadvantages. First, the accuracy 
requirement for comparing the candidate and benchmark SRQs is quite arbitrary. For example, 
should one require an accuracy of 1% or 0.1% or machine precision accuracy when comparing 
results? To say that the accuracy required depends on the application of interest, defeats the 
purpose of the benchmark. Second, the accuracy of the candidate result will depend directly on 
the mesh and temporal resolution used in the computed result. That is, the candidate result will 
depend in a continuous manner on mesh and temporal resolution used. As discussed in Section 
2.1.2, Code Verification Procedures, the most definitive test of the accuracy of a code is 
determining the observed order of accuracy. 

For type 1 and 2 benchmarks, the accuracy of the benchmarks should be adequate to 
determine the observed order of accuracy using the benchmark and solutions from two different 
mesh resolutions of the candidate. For a type 3 benchmark, this may not be possible because the 
accuracy of the benchmark may not be adequate. For a type 4 benchmark, it is essentially assured 
that the accuracy of the benchmark will not be adequate to reliably determine the observed order 
of accuracy of the candidate. As a result, different measures of “pass” and “fail” must be 
assigned to each type of benchmark compared with. 

If an observed order of accuracy can be computed for the candidate, there are two criteria 
one might use to determine pass/fail. One may choose to require that the observed order of 
accuracy of the candidate match its stated formal order of accuracy. Or, one may choose the 
weaker criteria that the observed order of accuracy of the candidate be positive, i.e., the 
minimum requirement that it converged to the correct answer. Regardless of which criteria is 
chosen, the observed order of accuracy should be reported in the documentation as a plot of 
observed order of accuracy as a function of mesh and/or temporal resolution. In this plot, one can 
discern the observed order of accuracy in the asymptotic region for the particular SRQ. 

If the observed order of accuracy cannot be computed for the candidate, then one is left 
with simply comparing the candidate result for an SRQ with the corresponding benchmark result. 
If this comparison is used, it is recommended that the results be shown as a difference between 
the candidate and the benchmark as a function of mesh and/or temporal resolution. If the 
candidate is capable of computing the solution as accurately as the benchmark, then the 
difference plotted would start to show erratic results for fine mesh resolutions. 

 
 

4. Recommendations for Validation Benchmarks 
 
In Section 2.2.2, Characteristics of Validation Experiments, we briefly discussed our views 

on the unique characteristics of validation experiments. As pointed out, a validation experiment 
is more than a traditional, high quality, experiment. It must provide information that is typically 
not available in traditional experiments, and it is optimized for a non-traditional customer: model 
builders and simulation analysts. Since most traditional experiments available in the published 
literature have not been designed as validation experiments, some of the recommended 
characteristics to be discussed for SSBs will seem rather idealistic and impractical to obtain. 
However, as new experiments are conducted in the future, these recommendations could be used 
for the design and acquisition of new high quality validation benchmarks. 

High quality validation benchmarks will be much more feasible to obtain at the lower tiers 
of the validation hierarchy. As one proceeds to higher tiers, i.e., more complex systems, in the 
hierarchy, the number and importance of the unmeasured input quantities will decrease the 
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ability to critically assess the computational model of interest. Stated differently, comparing 
experimental data obtained from complex systems with computational results inevitably becomes 
a process of calibrating the very large number of either unmeasured or poorly known parameters 
in the models. As will be seen in the following section, most of the recommendations for 
construction of validation benchmarks deal with the common theme: measurement and 
documentation by the experimentalist of essentially all input quantities needed in the code so as 
to minimize the degree of calibration of the physics modeling parameters. 

 
4.1 Construction of Validation Benchmarks 

 
As discussed with regard to Fig. 4, validation benchmarks are intended to address the issue 

of model accuracy assessment. Issues with regard to accuracy requirements for a particular 
application, or the accuracy of the model when it is extrapolated to other intended uses, are not 
addressed in validation benchmarks. In addition, issues regarding code verification, solution 
verification, and modeling assumptions are not dealt with in the validation benchmark, as those 
issues are properly addressed in Section 4.2, Comparing Candidate Code Results with Validation 
Benchmarks. As we have emphasized, there is logical dependence of the quality of validation 
upon verification. 

To clarify some of the characteristics discussed in the following material, we give an 
example of a hypothetical benchmark experiment in fluid dynamics. This example is carried 
through the discussion of each of the following subsections. Not every detailed piece of 
experimental information needed for the benchmark is discussed in this example, but we 
concentrate of those elements of the experiment that are not commonly included in execution and 
documentation of an experiment. 
 
4.1.1 Purpose and Scope of the Benchmark 

Listed in the following are the important elements that should be included in the 
description of the purpose and scope of the validation benchmark: 

 
a) A textual description should be given of the primary types of physics, or coupled physics, 

that the benchmark is intended to test in the computational modeling. If appropriate, a 
description should be given that is segregated into two categories of the importance of 
physics being tested: the primary physical processes occurring in the experiment, and the 
secondary physical processes occurring. This categorization will assist computational 
analysts and physics model developers in searching the validation database for 
experiments that are aligned with their immediate interests. In the design of validation 
experiments, one should maximize the effect of the physics of interest, and minimize the 
effects all other physical processes not of interest. An example in fluid dynamics is the 
following: 

 Primary physics occurring—incompressible, turbulent flow with large separated regions 
over a circular cylinder with heat transfer. 

 Secondary physics occurring—small effect of variable thermodynamic and transport 
properties near a heated surface and in a wake region. 

 
b) Provide a list of both quantitative and qualitative SRQs measured in the experiment. We 

have found that qualitative measurements, for example, video imaging of the physics 
phenomena during the experiment, can be very useful in guiding the computational 
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analyst in the appropriate assumptions that should be made for modeling of the 
experiment and also for aiding the experimentalist in diagnosing any unforeseen 
problems with the experiment. For our fluid dynamics example, one has: 

 System responses quantitatively measured—three-dimensional, unsteady, velocity 
measurements in streamwise planes normal to the cylinder, and high-frequency, surface 
pressure measurements in or near the wake of the cylinder. 

 System responses qualitatively measured—flow-field visualization provided by marker-
dye injection, and high-speed, digital video imaging of the flow field. 

 
c) A description should be given of what engineering applications the benchmark could be 

related to that would occur at higher levels in a validation hierarchy. Since complex 
engineering systems, or subsystems, of interest occur at higher tiers in the validation 
hierarchy, some examples should be provided so that electronic searches of the validation 
database could find benchmarks that may be of interest to a wide range of applications. 
Concerning our fluid dynamics example: 

 Related applications of interest—flow inside heat exchangers, natural convection inside 
cavities, liquid cooling of internal combustion engines, forced and natural convection 
over circuit boards. 

 
4.1.2 Description of the Benchmark, Experimental Technique, and Facility 

A wide variety of detailed information should be provided concerning not only the SRQs 
measured in the experiment, but also all computer code input data needed, experimental 
measurement techniques, data reduction and processing techniques, the experimental facility, etc. 
Some examples of the required information are the following: 

 
a) Description of the geometry of the experiment conducted, along with any supplementary 

experiments that were conducted in support of the benchmark experiment. A 
supplementary geometry could be one that the computational analyst could simulate with 
much higher accuracy and confidence than the primary geometry of interest. In our fluid 
dynamics example we have: 

 Geometry—flow over a circular cylinder near a flat, solid wall in a water tunnel, the 
cylinder was mounted at various distances from the wall, 0.0, 0.1, 0.2, and 0.5 cylinder 
diameters from the wall. 

 Supplementary geometry—flow inside the water tunnel without the cylinder in the test 
section. 

 
b) Specification of all of the measured boundary conditions, initial conditions, material 

properties, imperfections in the test geometry or experimental facility, forcing functions, 
surface properties, transport properties, thermodynamic properties, mass properties, etc. 
In the design of validation experiments, one should minimize the complexities and 
difficulties computational analysts must deal with concerning all of the issues just 
mentioned, if they are not important to assessment of the physics models of interest. In 
our fluid dynamics example we have: 

 Boundary conditions—a solid circular cylinder was heated over its entire length using 
electrical-resistance heating, the cylinder was mounted near the bottom wall of a water 
tunnel and it spanned the entire width of the test section, the tunnel had a square cross-
section 10 cm x 10 cm, the diameter of the cylinder was 1 cm. and it was placed 20 cm. 
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from the beginning of the test section, the test section was 100 cm long, all of the tunnel 
walls had a turbulent boundary layer approaching the test section, the three-dimensional, 
unsteady, velocity field was measured over the entire inflow plane at the beginning of the 
test section, the water temperature was measured at the beginning of the test section, the 
water was de-aerated to eliminate bubbles in the water, measurements were made for two 
Reynolds numbers (based on average inflow velocity, kinematic viscosity of the water, 
and diameter of the cylinder) 10 and 100. X 103, time-averaged static pressure 
measurements were made in the middle of each tunnel wall at three locations, at the 
beginning, middle, and end of the test section, the heat flux per unit length along the 
cylinder was measured, the heat flux leaking from the ends of the cylinder was measured, 
for 100 cm past the end of the test section each wall of the water tunnel was set at the 
same diverging angle of 5 deg resulting in an increasing cross-sectional area. 
Accompanying this textual description would be detailed drawings and schematics of the 
geometry of interest, the water tunnel, and measurement locations for the boundary 
conditions. 

 
c) Specification of all SRQs that are both quantitatively and qualitatively measured, along 

with a detailed description of the diagnostic techniques, analog-to-digital sampling, signal 
filtering, and signal conditioning methods. In our fluid dynamics example we have: 

 System responses quantitatively measured—three-dimensional, unsteady, velocity 
measurements in three planes normal to the cylinder, one plane was in the middle of the 
cylinder, the other two planes were half-way between the middle of the cylinder and each 
side wall, the planes extended from 5 diameters upstream of the cylinder to 10 diameters 
downstream of the cylinder, velocity measurements were made using particle imaging 
velocimetry (PIV) in a rectangular grid pattern at 5000 points in each plane, velocity 
measurements were made at a frequency of 1/sec for a time period of 1000 sec, time-
averaged velocity measurements are also available over the 1000 sec period, and high-
frequency, surface pressure measurements made on the wall of the tunnel at 0., 1. and 5 
diameters downstream of the cylinder. 

 System responses qualitatively measured—marker-dye was injected along a narrow slit 
parallel to the cylinder at a location of five cylinder diameters upstream of the cylinder, 
digital video images were recorded of each experiment at a framing rate of 100/sec, the 
unsteady cellular structure in the wake of the cylinder can be seen at each Reynolds 
number tested, along with the change in wake structure near the side-walls of the test 
section. 

 
4.1.3 Uncertainty Quantification of the Benchmark Measurements 

Estimates of experimental uncertainty should be provided for all of the SRQs measured, as 
well as of all the quantities that could be used as possible inputs for the computational 
simulation, for example, boundary conditions, initial conditions, material properties, geometrical 
features, etc. Some examples of the type of information that should be provided are the 
following: 

 
a) Describe all of the instrument, diagnostic, and facility calibration procedures. Particular 

emphasis in calibration procedures should be placed on identifying, and possibly 
estimating subtle bias errors in calibrations, e.g., shifts in diagnostic measurements due to 
temperature, pressure, time, reference frequencies, etc. In the design of validation 
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experiments, one should attempt to use multiple diagnostic techniques to measure both 
SRQs and input quantities. By comparing results from multiple measurement techniques 
one can better identify possible bias (systematic) errors in measurements. In our fluid 
dynamics example, one should attempt to use different diagnostic techniques to try and 
identify bias errors in optical calibration of PIV measurements. Also, attempt to use 
different techniques to determine possible temperature bias effects on the high-frequency, 
surface pressure measurements aft of the cylinder. 

 
b) Describe if an input quantity needed for the computational simulation is either a 

controlled or uncontrolled quantity in the experiment. A controlled quantity is one that 
can be adjusted, to a large degree, by the experimentalist or by procedures related to the 
operation of the experimental facility. An uncontrolled quantity is one that the 
experimentalist has little or no control over, such as atmospheric weather conditions, a 
missile impacting an irregular surface, turbulence spectrum and spatial variability in a 
wind tunnel, and unit-to-unit variability of material samples. If a quantity is an 
uncontrolled quantity, but one that can be measured, e.g., atmospheric weather 
conditions, then measurement uncertainty in the measurement should be given. If the 
quantity is an uncontrolled quantity, but one that is a random draw from a population, 
then the population should be well characterized before the experiment. For example, if 
material testing is being conducted on a number of small specimens (coupons), then the 
needed input material properties should be characterized by a probability distribution 
constructed by large number of random draws from the sample population. There are also 
situations were there are a very limited number of specimens and the specimens are 
destroyed in the characterization process. In this case, large uncertainty exists in the 
characterization of the population, resulting in an ensemble of probability distributions. 
Alternately, the characterization of the specimen population would occur during the 
validation process by way of a calibration activity. This latter approach, although less 
desirable because it combines validation and calibration, is some unavoidable. 

 
c) Estimates should be provided of both the bias error and the random (precision) error of 

the quantities measured. The uncertainty in measured quantities could be characterized as 
one of the following: an interval, i.e., there is a single true value that is believed to lie in 
the stated interval, but no other information is available concerning the true value; an 
imprecise probability distribution, i.e., the true quantity is a random variable 
characterized by a known family of probability distributions, but the parameters of the 
probability distribution are only stated as intervals; and a precise probability distribution, 
i.e., the true quantity is a random variable characterized by a probability distribution with 
accurately known parameters. It has been found that one of the most effective methods of 
quantifying experimental uncertainties, particularly bias errors, is to conduct the same 
experiment in multiple experimental facilities, preferably using different diagnostic 
techniques. The time and cost involved in conducting experiments at multiple facilities 
will commonly cause a fainting-spell among most project managers and funding sources. 

 
d) Description of and justification for the uncertainty quantification of each measured 

quantity should be provided. Some examples of uncertainty quantification procedures are, 
from least desirable to most desirable: experience of the experimentalist from previous 
experiments using similar techniques in the same facility; measurement of some of the 
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components contributing to uncertainty, but no formal procedure for estimating 
uncertainty; propagation of contributing uncertainties to formally estimate uncertainty in 
an SRQ;[86] and design of experiment statistical procedures to directly estimate the 
uncertainty in SRQs using multiple realizations of the experimental measurements under 
varying conditions.[2, 3, 72, 87, 88] This last procedure, if properly implemented in the 
design and execution of the experiment, can quantify certain types of correlated-bias 
errors, such as that due to: wind tunnel flow field non-uniformity, wind tunnel model 
imperfections, certain types of misalignment in a load cell, and asymmetries in thermal 
heating of components. 

 
4.1.4 Documentation of the Benchmark 

The documentation should include all of the information discussed in the previous three 
subsections, and all of the more traditional documentation associated with archiving high quality 
experiments. In addition, the documentation should include details that would possibly assist 
users of the benchmark in the following ways. First, information on the experimental technique, 
experimental facility, boundary condition, initial conditions, etc, that might help the 
computational modeler choose different modeling assumptions than the experimentalist might 
have thought the modeler would have used. For example, the modeler may chose to assume a 
three-dimensional Cartesian coordinate system instead of a two-dimensional axisymmetric 
coordinate system, or the modeler may want to include the actual nonuniformities in either the 
component tested for the facility being used in the experiment. Second, another experimentalist 
may choose to conduct the same experiment in their facility and submit their results to either 
supplement the existing benchmark, or possibly replace the existing benchmark. Also, all of the 
experimental data should be easily available in commonly used electronic format, for visual and 
quantitative presentation. 

 
4.2 Comparing Candidate Code Results with Validation Benchmarks 

 
As discussed in Section 3.2, Comparing Candidate Code Results with Verification 

Benchmarks, we are only interested in formal comparisons of code results with validation 
benchmarks. Also, as explained earlier, the code results and comparisons with the validation 
benchmarks should not be included in the database. 

In comparison of code results with validation data we do not feel there is an acceptable 
way, in general, to answer the question: Did the code pass the validation benchmark? Our 
viewpoint can be explained from two perspectives. First, we view assessment of model accuracy 
by comparison with experimental data as a “continuum” in the sense of validation metrics 
discussed in Section 2.2.1, Fundamentals of Validation. We believe that validation metrics are 
the fundamental operators in assessing model accuracy. A validation metric is a difference 
operator that can yield a deterministic result, a precise probability distribution, or an imprecise 
probability distribution; and, preferably, with some type of associated confidence measure. 
Stated differently, validation metrics are simply measures of agreement between simulations and 
experiments that have no fundamental “good” or “bad” associated with them. Second, to state 
that a benchmark is passed, one would have to have some stated accuracy requirement for an 
application of interest, as discussed concerning Fig. 4. The accuracy requirement should, we 
believe, be determined by the application of interest; not some vague concept with regard to the 
philosophy of science or how much scatter exists in the experimental data. In addition, validation 
metrics can be applied to several different SRQs from a validation benchmark. It is expected that 
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the metric results for some of the SRQs will meet accuracy requirements, and some will not. 
Then, as we have observed in real engineering projects, additional discussions will ensue with 
regard to the appropriateness of the accuracy requirements, as well as the cost, schedule, and 
performance of the engineering system of interest. The consequence of our viewpoint is that the 
comparison of code results with validation benchmarks should be formally documented, but no 
pass or fail assignment should be given. 

The type of information that should be included in the documentation of comparison of 
code results with validation benchmarks is a combination of that described earlier for 
constructing verification benchmarks, especially for a type 4 benchmark, and validation 
benchmarks. We only mention a few topics in the following to stress certain elements and to add 
new elements that should be documented: 

 
a) Code verification. References should be provided to document the code verification 

activities that have been completed and version of the code used. 
 
b) Solution verification. Detailed information should be provided concerning iterative error 

convergence. At least three mesh resolutions and three temporal discretizations should be 
computed so that Richardson’s method can be used to estimate the spatial and temporal 
discretization error on each of the SRQs that are compared with the experimental data. In 
addition, the observed order of accuracy should be documented, along with the 
theoretical order of accuracy. 

 
c) Computation of SRQs. In almost all fields of engineering it is traditional to compute 

deterministic values for SRQs. That is, it is assumed that no uncertainty exists in any of 
the input quantities, e.g., boundary conditions, initial conditions, material properties, etc, 
so that a single value is computed for each of the SRQs. These deterministic values are 
then compared with the experimentally measured SRQs. This is, of course, the minimum 
level of comparison that should be made between code results and experimental 
benchmark results. It is recommended, however, that non-deterministic results be 
computed for each SRQ based on the uncertainty quoted for each input quantity, as stated 
in the validation benchmark. This is usually referred to as uncertainty quantification of 
SRQs as a function of uncertainty input quantities. As discussed in Section 4.1.3, the 
uncertain input quantity could be characterized as an interval, an imprecise probability 
distribution, or a precise probability distribution. Propagation of these uncertain 
quantities through the computational simulation model will likely rely on methods like 
Monte Carlo sampling or Latin Hypercube sampling.[89-92]] Importantly, major 
increases in computational resources will be required to compute tens or hundreds of 
solutions needed for the sampling techniques. In our experience, there will be a great deal 
of resistance to expending this level of computational resources for this purpose. 
Nonetheless, the probabilistic risk assessment community, especially nuclear reactor 
safety and underground storage of nuclear waste, has accepted this philosophy of 
simulation for over two decades. 

 
d) Validation metrics. It is recommended that validation metrics be used to compare the 

computed and measured SRQs, instead of the typical viewgraph norm technique. 
Graphical comparisons should be included because they are a very traditional comparison 
technique, however validation metrics should also be used. Since validation metrics are in 
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an early stage of development, there is only a limited range of examples to draw upon. [4, 
15, 76, 77, 79, 93-97] It is recommended that validation metric results be computed for 
all of the SRQs measured in the experiment so that objective information is complete 
rather than partial or biased toward those that “look good.” 

 
e) Calibration. As we have emphasized earlier in our discussion, we have carefully 

distinguished between validation, i.e., assessment of model accuracy, and calibration, i.e., 
activities to optimize model parameters when code results are compared with 
experimental measurements. Without a doubt, the most common parameters that are 
optimized are those that were not provided by the experimentalist in documentation of 
the experiment. That is why we have stressed the importance of the experimentalist 
providing uncertainty estimates of all input quantities that might be needed for 
simulations. However, we recognize that there will probably be some “wiggle room” for 
computational analysts to optimize unmeasured, and undocumented, input quantities 
needed for the code that are related to physical characteristics of the experiment. If this is 
done in obtaining the code results, we feel it is necessary for the analyst to document any 
procedures used to optimize input quantities. Our recommendation also applies to any 
numerical parameters, such as, numerical damping, numerical smoothing, or numerical 
parameters such as hour-glass control of the vibrational modes of individual elements in 
solid dynamics meshes. 

 
f) Global sensitivity analysis. Here we mean an analysis which rank orders the importance 

of each uncertain input for each SRQ according to the magnitude of change of the SRQ 
for a unit change in each uncertain input. This is typically done by using the sampling 
results from the uncertainty quantification analysis discussed above and reprocessing the 
results to obtain a global sensitivity analysis. (See, for example, Refs. [98-101] 
Conducting a sensitivity analysis as part of a comparison of code results with a validation 
benchmark is important from two perspectives. First, the analyst computing the results, or 
another analyst reading the documentation, will obtain a deeper understanding of the 
importance of different input quantities with regard to SRQs. Often, the ranking of 
sensitivities can be quite surprising. Second, the experimentalist who conducted the 
experiment can use the sensitivity analysis to possibly update the uncertainty estimation 
on some measured quantities. Also, the experimentalist, or possibly a different 
experimental group, may choose to conduct a new experiment and judiciously reduce the 
experimental uncertainty on the largest contributors to uncertainty in SRQs. 

 
 

5. Implementation Issues of a Verification and Validation Database 
 
If verification and validation SSBs and a database to house them were to become a reality, 

there would be a number of complex and difficult implementation and organizational issues that 
would have to be addressed and agreed upon. Some of these would be, for example: primary and 
secondary goals of the database; initial construction of the database; review and approval 
procedures for entries into the database; open versus restricted use of the database; software 
construction of the database; organizational control of the database; relationship of the 
controlling organization to existing organizations; and, initial and long term funding of the 
database. These issues are of major importance to the joint community of individuals, 
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corporations, non-profit organizations, engineering societies, universities, and governmental 
organizations with serious interest in verification and validation. 

Initial construction of a database is a technically and organizationally complex, as well as 
costly, endeavor. Population of the database with relevant and high-quality benchmarks is a 
community effort, and cuts across major disciplines of theory, experiment, computation, 
application, and decision-making. Putting this kind of collaborative effort together hinges on a 
careful plan that takes the long view for the database. The benchmark effort we describe here 
makes little sense as a short-term task. Much of what we recommend clearly aims at sustainable 
use of the database, with an implication that the quality and breadth of the database improves 
over a long period of time. Long-term success of the database requires a sound starting point 
with broad consensus as to the goals, use, access, and funding over the long term. 

There are broad organizational issues that must be address very early in the planning stage. 
Will a single organization (non-profit, academic, or governmental) have responsibility for 
database maintenance, configuration management, and day-to-day operation? Will the database 
have a role beyond its immediate community, as we have essentially argued in this paper? This 
implies that there is the goal of open access to the database for the good of the broader 
community, specifically the world community in each of the traditional scientific and 
engineering disciplines. But how is this goal compatible with the significant expense needed to 
create the database, to maintain it, and to improve it? Financial supports and users of the 
database would need to be convinced of the value returned to them for their investment. The 
value back to them could be in many forms, for example, improvements in their software 
products, ability to attract new customers to their software products, and use as a quality 
assessment requirement for contractors to bid on new projects. If proprietary information is used 
in the database, we believe it would greatly diminish, possibly eliminate, the ability to create and 
sustain the database. 

It seems that V&V databases of the type we have discussed should be constructed along the 
lines of traditional engineering and science disciplines, e.g., fluid dynamics, solid dynamics, 
electrodynamics, neutron transport, plasma dynamics, molecular dynamics, etc. How each of 
these disciplines might begin to construct databases certainly depends on the traditions, 
applications, and funding sources in each of these fields. Our views about the implementation 
and organizational issues of a database are based on our background in fluid dynamics. 

This paper concentrated on the construction of SSBs primarily for the purpose of assessing 
numerical accuracy in codes (verification) and assessing physics modeling accuracy in codes 
(validation). We recognize this is a narrow view of the possible uses of benchmarks, but we feel 
that SSBs are critically needed at this early stage of maturity of computational simulation. We 
would suggest that a secondary purpose to the establishment and use of SSBs would be for 
development of best practices in computational simulation. As recognized by NAFEMS[6] and 
ERCOFTAC,[102] there is a compelling need for improvements in professional practice in 
computational simulation. We feel that one could make a convincing argument that the most 
common failure mode in industrial applications of computational simulation is the practitioner 
using the code. Corporate and governmental management, of course, shoulders the ultimate 
responsibility for mentoring and training these experts, and monitoring their computational 
simulation work-products. Given the qualities of SSBs discussed earlier, they could be viewed as 
very carefully documented, step-by-step, sample problems that practitioners, new and 
experienced, could learn a great deal from. 

Rizzi and Vos[11] and Vos et al[12] discuss how validation databases could be built and 
used by a wide range of individuals and organizations. They stress the importance of close 
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collaboration between corporations and universities in the construction and refinement of a 
validation database. In this regard, they also stress the value of workshops that are focused on 
specialty topics to improve the modeling efforts and simulations that are compared to 
experimental data. They discuss a number of workshops and initiatives in Europe, primarily 
funded by the European Union. Often these workshops provide dramatic evidence of the power 
of carefully defined and applied V&V benchmarks. One such effort organized in the U.S., but 
with participants from around the world, is the series of Drag Prediction Workshops.[103-107] 
These have been extraordinarily enlightening; primarily pointing out the great variability in drag 
predictions for a relatively simple aircraft geometry, and the surprisingly large differences 
between computational results and experimental measurements. Results from these types of 
workshops could form the basis for initial submittals for the database. 

We believe an Internet-based system would provide the best vehicle for deployment of 
V&V databases for three reasons. First, the ability to build, quickly share and collaborate with an 
Internet-based system is now blatantly obvious. A paper-based system would be completely 
unworkable, as well as decades behind the current state of information technology. We speculate 
on one aspect of deployment, although this issue is beyond the purpose of this paper, Many 
businesses around the world are better understanding the competitive advantage provided by the 
speed of information transfer within their organization, even if their organization is spread 
around the world. Thus, we expect that corporate acceptance of a benchmark effort might hinge 
on Internet deployment.  

Second, words that are of interest in a particular application of interest could be input to a 
search engine that could find all of the benchmarks that would contain those words. The search 
engine could operate much like that found in Google or Wikipedia. Functionality could be 
expanded to include a relevancy-ranking feature that would further improve the search and 
retrieval capability. The overall system design would include configuration, document, and 
content management elements. Then the benchmarks found could be sorted according to their 
relevance to the words input to the search. One could then click on the hyperlinks embedded 
with any of the benchmarks found. When a particular benchmark is displayed, one could have 
links from important words in the benchmark description to more detailed information in the 
benchmark. And third, the computer-based system can instantly provide much more detail 
concerning each benchmark. 

In the long term, new validation experiments as community goals should be funded either 
by the organization controlling the database or by private, non-profit, or governmental 
organizations. These new results could then be entered into the database. We believe that 
identification of new validation experiments should be the responsibility of both the application 
community and the database organization. Funding for high-priority experiments could possibly 
be obtained from corporations, governmental institutions, and even joint ventures between 
private industrial organizations. The organizational role and facilitation of discussions regarding 
which experiments should be conducted would be best served by the database organization. 

 
 

6. Concluding Remarks 
 
In this paper we have made the argument that significantly improved methodology and 

practice of V&V is necessary to achieve improved credibility in computational science and 
engineering. We have discussed in detail one element of needed improvements; the design, 
construction, and use of strong-sense benchmarks in V&V. If you are of the opinion that CS&E 
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is fully mature, and fully capable, to shoulder the new responsibilities demanded of it, then you 
will have little interest in the ideas proposed here. If you are of the opinion, as we are, that CS&E 
is in its early stages of development and contributions made to business, society, and to 
governments, then you will be interested in our ideas. Even though the development of strong-
sense benchmarks will be slow, difficult, and costly, they are necessary for maturation of CS&E. 

While we only touched on organizational issues surrounding the construction and use of 
V&V databases, these are, in fact, highly sensitive issues with aspects of business-to-business 
economic competition, organizational and national prestige, and national security implications. 
Increasing the level of formality of V&V by constructing databases is going to inevitably lead to 
active discussions about the further improvements in university education and professional-level 
training in the field of computational science. This is the inevitable consequence of devoting 
large amounts of expert thought, money, and labor to the deployment and utilization of such 
databases. If these databases are developed and widely used around the world, then they are 
going to evolve into de facto, if not intentionally designed, standards. There would be similarities 
of V&V benchmark standards to international procedures that have developed over the last 
century for physical measurement standards. However, the range of expert knowledge required 
for V&V benchmark standards would be much broader than measurement standards. 
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